Advertisement

Current Genetics

, Volume 57, Issue 6, pp 367–390 | Cite as

The falsifiability of the models for the origin of eukaryotes

  • Matej Vesteg
  • Juraj Krajčovič
Review

Abstract

One group of hypotheses suggests archaeal and/or bacterial ancestry of eukaryotes, while the second group suggests that the ancestor of eukaryotes was different. Especially, the followers of the first group of hypotheses should ask the following: is the replacement of archaeal lipids by bacterial (or vice versa) possible? Do the phylogenies support the origin of one domain from another (or the others)? Can we consider the nutritional mode to resolve the problems of cell origin(s)? Is there any evidence that the ancestor of eukaryotes was intron-free? Would the symbiosis of α-proteobacterial ancestors of mitochondria be successful in an asexual host? Is there evidence that the last universal common ancestor (LUCA) or the last eukaryotic common ancestor was bounded by one membrane only? With respect to the current knowledge about cells and their molecular components, the answer to most of these questions is: No! A model for the origins of domains is briefly presented which cannot be assigned as false through the current scientific data, and is rather consistent with the assumption that eukaryotes are direct descendants of neither archaea nor bacteria. It is proposed that the domain Bacteria arose the first, and that the last common ancestor of Archaea and Eukarya was a pre-cell or a progenote similar to LUCA. The pre-karyote (the host entity for α-proteobacterial ancestors of mitochondria) was probably bounded by two membranes, possessed spliceosomal introns and spliceosomes, was sexual, and α-proteobacterial ancestors of mitochondria were most likely parasites of the pre-karyote periplasm (intermembrane space).

Keywords

Last universal common ancestor (LUCA) Lipid heterochirality Mitochondria Progenote Splicing Sexual reproduction 

Abbreviations

LACA

Last archaeal common ancestor

LBCA

Last bacterial common ancestor

LCAAE

Last common ancestor of Archaea and Eukarya

LECA

Last eukaryotic common ancestor

LUCA

Last universal common ancestor

RNP

Ribonucleoprotein

Notes

Acknowledgments

This work was supported by grant VEGA Grant No. 1/0416/09 from the Ministry of Education of the Slovak Republic to J. K., and it is the result of the project implementation: “Centre of excellence for exploitation of informational biomacromolecules in disease prevention and improvement of quality of life”, ITMS 26240120003, supported by the Research and Development Operational Programme funded by the ERDF. We wish to thank anonymous reviewers for their useful comments and suggestions that contributed to the final version of this manuscript. We thank Ray Marshall (Department of Languages, Faculty of Natural Sciences, Comenius University, Bratislava) for the language revision of this manuscript.

References

  1. Adams KL, Daley DO, Whelan J, Palmer JD (2002) Genes for two mitochondrial ribosomal proteins in flowering plants are derived from their chloroplast or cytosolic counterparts. Plant Cell 14:931–943PubMedGoogle Scholar
  2. Allen CA, Jackson AP, Rigden DJ, Willis AC, Ferguson AC, Ginger ML (2008) Order within a mosaic distribution of mitochondrial c-type cytochrome biogenesis systems? FEBS J 275:2385–2402PubMedGoogle Scholar
  3. Amos LA, van den Ent F, Löwe J (2004) Structural/functional homology between the bacterial and eukaryotic cytoskeletons. Curr Opin Cell Biol 16:24–31PubMedGoogle Scholar
  4. Andersson SGE, Kurland CG (1999) Origins of mitochondria and hydrogenosomes. Curr Opin Microbiol 2:535–541PubMedGoogle Scholar
  5. Andersson SGE, Zomorodipour A, Andersson JO, Sicheritz-Ponten T, Alsmark UCM, Podowski RM, Naslund AK, Eriksson AS, Winkler HH, Kurland CG (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396:133–140PubMedGoogle Scholar
  6. Andersson SGE, Alsmark C, Canbäck B, Davids W, Frank C, Karlberg O, Klasson L, Antoine-Legault B, Mira A, Tamas I (2002) Comparative genomics of microbial pathogens and symbionts. Bioinformatics 18:S17PubMedGoogle Scholar
  7. Andersson SGE, Karlberg O, Canback B, Kurland CG (2003) On the origin of mitochondria: a genomics perspective. Phil Trans R Soc Lond B 358:165–179Google Scholar
  8. Archetti M (2003) A selfish origin for recombination. J Theor Biol 223:335–346PubMedGoogle Scholar
  9. Asai T, Zaporojets D, Squires C, Squires CL (1999) An Escherichia coli strain with all chromosomal rRNA operons inactivated: complete exchange of rRNA genes between bacteria. Proc Natl Acad Sci USA 96:1971–1976PubMedGoogle Scholar
  10. Baluška F, Volkmann D, Barlow PW (2004) Eukaryotic cells and their cell bodies: cell theory revised. Ann Botany 94:9–32Google Scholar
  11. Bapteste E, Brochier C (2004) On the conceptual difficulties in rooting the tree of life. Trends Microbiol 12:9–13PubMedGoogle Scholar
  12. Bapteste E, Charlebois RL, McLeod D, Brochier C (2005) The two tempos of nuclear pore complex evolution: highly adapting proteins in an ancient frozen structure. Genome Biol 6:R85PubMedGoogle Scholar
  13. Basu MK, Rogozin IB, Deusch O, Dagan T, Martin W, Koonin EV (2008) Evolutionary dynamics of introns in plastid-derived genes in plants: saturation nearly reached but slow intron gain continues. Mol Biol Evol 25:111–119PubMedGoogle Scholar
  14. Baurén G, Wieslander L (1994) Splicing of Balbiani ring 1 gene pre-mRNA occurs simultaneously with transcription. Cell 76:183–192PubMedGoogle Scholar
  15. Berg OG, Kurland CG (2000) Why mitochondrial genes are most often found in nuclei. Mol Biol Evol 17:951–961PubMedGoogle Scholar
  16. Bernstein H, Byers GS, Michod RE (1981) Evolution of sexual reproduction: importance of DNA repair, complementation and variation. Am Nat 117:537–549Google Scholar
  17. Beyer AL, Osheim YN (1988) Splice site selection, rate of splicing, and alternative splicing on nascent transcripts. Genes Dev 2:754–765PubMedGoogle Scholar
  18. Blobel G (1980) Intracellular topogenesis. Proc Natl Acad Sci USA 77:1496–1500PubMedGoogle Scholar
  19. Bonen L (2008) Cis- and trans-splicing of group II introns in plant mitochondria. Mitochondrion 8:26–34PubMedGoogle Scholar
  20. Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008a) Mesophilic Crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6:245–252PubMedGoogle Scholar
  21. Brochier-Armanet C, Gribaldo S, Forterre P (2008b) A DNA topoisomerase IB in Thaumarchaeota testifies for the presence of this enzyme in the last common ancestor of Archaea and Eucarya. Biol Direct 3:54PubMedGoogle Scholar
  22. Brochier-Armanet C, Forterre P, Gribaldo S (2011) Phylogeny and evolution of the Archaea: one hundred genomes later. Curr Opin Microbiol 14:1–8Google Scholar
  23. Brunelle SA, van Dolah FM (2011) Post-transcriptional regulation of S-phase genes in the dinoflagellate, Karenia brevis. J Eukaryot Microbiol 58:373–382PubMedGoogle Scholar
  24. Canbäck B, Andersson SGE, Kurland CG (2002) The global phylogeny of glycolytic enzymes. Proc Natl Acad Sci USA 99:6097–6102PubMedGoogle Scholar
  25. Cavalier-Smith T (1987) The origin of eukaryotic and archaebacterial cells. Ann N Y Acad Sci 503:17–54PubMedGoogle Scholar
  26. Cavalier-Smith T (1991) Intron phylogeny: a new hypothesis. Trends Gen 7:145–148Google Scholar
  27. Cavalier-Smith T (2000) Membrane heredity and early chloroplast evolution. Trends Plant Sci 5:174–182PubMedGoogle Scholar
  28. Cavalier-Smith T (2001) Obcells as proto-organisms: membrane heredity, lithophosphorylation, and the origins of genetic code, the first cells, and photosynthesis. J Mol Evol 53:555–595PubMedGoogle Scholar
  29. Cavalier-Smith T (2002a) The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification. Int J Syst Evol Microbiol 52:7–76PubMedGoogle Scholar
  30. Cavalier-Smith T (2002b) Origin of the machinery of recombination and sex. Heredity 88:125–141PubMedGoogle Scholar
  31. Cavalier-Smith T (2002c) The phagotrophic origin of eukaryotes and the phylogenetic classification of Protozoa. Int J Syst Evol Microbiol 52:297–354PubMedGoogle Scholar
  32. Cavalier-Smith T (2003) Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote–eukaryote chimaeras (meta-algae). Phil Trans R Soc Lond B 358:109–134Google Scholar
  33. Cavalier-Smith T (2006) Rooting the tree of life by transition analyses. Biol Direct 1:19Google Scholar
  34. Cavalier-Smith T (2009) Predation and eukaryote cell origins. Int J Biochem Cell Biol 41:307–322PubMedGoogle Scholar
  35. Cavalier-Smith T (2010a) Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree. Biol Lett 6:342–345PubMedGoogle Scholar
  36. Cavalier-Smith T (2010b) Origin of the cell nucleus, mitosis and sex: roles of intracellular coevolution. Biol Direct 5:7PubMedGoogle Scholar
  37. Cech TR (2011) The RNA world in context. Cold Spring Harb Perspect Biol (in press). doi: 10.1101/cshperspect.a006742
  38. Chalamcharla VR, Curcio MJ, Belfort M (2010) Nuclear expression of a group II intron is consistent with spliceosomal intron ancestry. Genes Dev 24:827–836PubMedGoogle Scholar
  39. Chia N, Cann I, Olsen GJ (2010) Evolution of DNA replication protein complexes in eukaryotes and Archaea. PLoS One 5:e10688Google Scholar
  40. Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P (2006) Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283–1287PubMedGoogle Scholar
  41. Coetzee JN, Sirgel FA, Lecastsas G (1979) Genetic recombination in fused sphaeroplasts of Providencia alcalifaciens. J Gen Microbiol 114:313–322PubMedGoogle Scholar
  42. Collins L, Penny D (2005) Complex spliceosomal organization ancestral to extant eukaryotes. Mol Biol Evol 22:1053–1066PubMedGoogle Scholar
  43. Cox CJ, Foster PG, Hirt RP, Harris SR, Embley TM (2008) The archaeabacterial origin of eukaryotes. Proc Natl Acad Sci USA 105:20356–20361PubMedGoogle Scholar
  44. Cramer P (2006) Molecular biology. Self-correcting messages. Science 313:447–448PubMedGoogle Scholar
  45. Dacks JB, Field MC (2007) Evolution of the eukaryotic membrane-trafficking system: origin, tempo and mode. J Cell Sci 120:2977–2985PubMedGoogle Scholar
  46. Dacks JB, Poon PP, Field MC (2008) Phylogeny of endocytic components yields insight into the process of nonendosymbiotic organelle evolution. Proc Natl Acad Sci USA 105:588–593PubMedGoogle Scholar
  47. Dacks JB, Peden AA, Field MC (2009) Evolution of specificity in the eukaryotic endomembrane system. Int J Biochem Cell Biol 41:330–340PubMedGoogle Scholar
  48. Dagan T, Martin W (2007) Testing hypothesis without considering prediction. BioEssays 29:500–503PubMedGoogle Scholar
  49. Dai L, Zimmerly S (2003) ORF-less and reverse-transcriptase-encoding group II introns in archaebacteria, with a pattern of homing into related group II intron ORFs. RNA 9:14–19PubMedGoogle Scholar
  50. Darnell JE (1978) Implications of RNA–RNA splicing in evolution of eukaryotic cells. Science 202:1257–1260PubMedGoogle Scholar
  51. Davidov Y, Jurkevitch E (2009) Predation between prokaryotes and the origin of eukaryotes. Bioessay 31:748–757Google Scholar
  52. Davidov Y, Huchon D, Koval SF, Jurkevitch E (2006) A new α-proteobacterial clade of Bdellovibrio-like predators: implications for the mitochondrial endosymbiotic theory. Environ Microbiol 8:2179–2188PubMedGoogle Scholar
  53. Davis R, Singh H, Botka C, Hardwick M, Meanawy AE, Villanueva J (1994) RNA trans-splicing in Fasciola hepatica: identification of a spliced leader SL RNA and SL sequences on mRNAs. J Biol Chem 269:20026–20030PubMedGoogle Scholar
  54. de Duve C (2007) Origin of eukaryotes: a reappraisal. Nat Rev Genet 8:395–403PubMedGoogle Scholar
  55. de Nooijer S, Holland BR, Penny D (2009) The emergence of predators in early life: there was no Garden of Eden. PLoS One 4:e5507PubMedGoogle Scholar
  56. Derelle R, Momose T, Manuel M, Da Silva C, Wincker P, Houliston E (2010) Convergent origins and rapid evolution of spliced leader trans-splicing in metazoa: insights from the ctenophora and hydrozoa. RNA 16:696–707PubMedGoogle Scholar
  57. Desmond E, Brochier-Armanet C, Forterre P, Gribaldo S (2011) On the last common ancestor and early evolution of eukaryotes: reconstructing the history of mitochondrial ribosomes. Res Microbiol 162:53–70PubMedGoogle Scholar
  58. Devos D, Dokudovskaya S, Alber F, Williams R, Chait BT, Sali A, Rout MP (2004) Components of coated vesicles and nuclear pore complexes share a common molecular architecture. Plos Biol 2:e380PubMedGoogle Scholar
  59. Di Giulio M (2007) The universal ancestor and the ancestors of Archaea and Bacteria were anaerobes whereas the ancestor of the Eukarya domain was an aerobe. J Evol Biol 20:543–548PubMedGoogle Scholar
  60. Di Giulio M (2011) The last universal common ancestor (LUCA) and the ancestors of archaea and bacteria were progenotes. J Mol Evol 72:119–126PubMedGoogle Scholar
  61. Doolittle WF (1978) Genes in pieces: were they ever together? Nature 272:581–582Google Scholar
  62. Doolittle WF (1991) The origin of introns. Curr Biol 1:145–146PubMedGoogle Scholar
  63. Doolittle RF (2000) Searching for the common ancestor. Res Microbiol 151:85–89PubMedGoogle Scholar
  64. Doolittle WF, Lukeš J, Archibald JM, Keeling PJ, Gray MW (2011) Comment on “Does constructive neutral evolution play an important role in the origin of cellular complexity?”. Bioessays 33:427–429PubMedGoogle Scholar
  65. Douris V, Telford MJ, Averof M (2010) Evidence for multiple independent origins of trans-splicing in Metazoa. Mol Biol Evol 27:684–693PubMedGoogle Scholar
  66. Edgell DR, Doolittle WF (1997) Archaea and the origin(s) of DNA replication proteins. Cell 89:995–998PubMedGoogle Scholar
  67. Embley TM, Martin W (2006) Eukaryotic evolution, changes and challenges. Nature 440:623–630PubMedGoogle Scholar
  68. Esser C, Ahmadinejad N, Wiegand C, Route C, Sebastiani F, Gelius-Dietrich G, Hentze K, Kretschmann E, Richly E, Leister D, Bryant D, Steel MA, Lockhart PJ, Penny D, Martin W (2004) A genome phylogeny for mitochondria among α-proteobacteria and predominantly eubacterial ancestry of yeast nuclear genes. Mol Biol Evol 21:1643–1660PubMedGoogle Scholar
  69. Felsenstein J (1978) Cases in which parsimony or compatibility methods will be positively misleading. Syst Zool 27:401–410Google Scholar
  70. Field MC, Dacks JB (2009) First and last ancestors: reconstructing evolution of the endomembrane system with ESCRTs, vesicle coat proteins, and nuclear pore complexes. Curr Opin Cell Biol 21:4–13PubMedGoogle Scholar
  71. Fisher RA (1930) The genetical theory of natural selection. Oxford University Press, OxfordGoogle Scholar
  72. Flegontov P, Gray MW, Burger G, Lukeš J (2011) Gene fragmentation: a key to mitochondrial genome evolution in Euglenozoa? Curr Genet 57:225–232PubMedGoogle Scholar
  73. Fodor K, Alfoldi L (1976) Fusion of protoplasts of Bacillus megatherium. Proc Natl Acad Sci USA 73:2147–2150PubMedGoogle Scholar
  74. Forterre P (1995) Thermoreduction, a hypothesis for the origin of prokaryotes. C R Acad Sci Paris Life Sci 318:414–422Google Scholar
  75. Forterre P (1999) Displacement of cellular proteins by functional analogues from plasmids or viruses could explain puzzling phylogenies of many DNA informational proteins. Mol Microbiol 33:457–465PubMedGoogle Scholar
  76. Forterre P (2002) The origin of DNA genomes and DNA replication proteins. Curr Opin Microbiol 5:525–532PubMedGoogle Scholar
  77. Forterre P (2006) Three RNA cells for ribosomal lineages and three DNA viruses to replicate their genomes: a hypothesis for the origin of cellular domain. Proc Natl Acad Sci USA 103:3669–3674PubMedGoogle Scholar
  78. Forterre P, Philippe H (1999) Where is the root of the universal tree of life? Bioessays 21:871–879PubMedGoogle Scholar
  79. Foster PG, Cox CJ, Embley TM (2009) The primary divisions of life: a phylogenomic approach employing composition-heterogeneous methods. Phil Trans R Soc Lond B Biol Sci 364:2197–2207Google Scholar
  80. Fournier GP, Gogarten JP (2010) Rooting the ribosomal tree of life. Mol Biol Evol 27:1792–1801PubMedGoogle Scholar
  81. Fuerst JA (2005) Intracellular compartmentation in Planctomycetes. Annu Rev Microbiol 59:299–328PubMedGoogle Scholar
  82. Fuerst JA, Sagulenko E (2010) Protein uptake by bacteria: an endocytosis-like process in the planctomycete Gemmata obscuriglobus. Commun Integr Biol 3:572–575PubMedGoogle Scholar
  83. Fuerst JA, Sagulenko E (2011) Beyond the bacterium: planctomycetes challenge our concepts of microbial structure and function. Nat Rev Microbiol 9:403–413PubMedGoogle Scholar
  84. Gabaldón T, Huynen MA (2004) Shaping the mitochondrial proteome. Biochim Biophys Acta 1659:212–220PubMedGoogle Scholar
  85. Ganot P, Kallesoe T, Reinhardt R, Chourrout D, Thompson E (2004) Spliced-leader RNA trans-splicing in a chordate, Oikopleura dioica, with compact genome. Mol Cell Biol 24:7795–7805PubMedGoogle Scholar
  86. Gilbert W (1978) Why genes in pieces? Nature 271:501PubMedGoogle Scholar
  87. Glansdorff N, Xu Y, Labedan B (2008) The last universal common ancestor: emergence, constitution and genetic legacy of an elusive forerunner. Biol Direct 3:29PubMedGoogle Scholar
  88. Glansdorff N, Xu Y, Labedan B (2009) The conflict between horizontal gene transfer and the safeguard of identity: origin of meiotic sexuality. J Mol Evol 69:470–480PubMedGoogle Scholar
  89. Glanz S, Kück U (2009) Trans-splicing of organelle introns—a detour to continuous RNAs. Bioessays 3:921–934Google Scholar
  90. Godoy PD, Nogueira-Junior LA, Paes LS, Cornejo A, Martins RM, Silber AM, Schenkman S, Elias MC (2009) Trypanosome prereplication machinery contains a single functional Orc1/Cdc6 protein, which is typical of archaea. Eukaryot Cell 8:1592–1603PubMedGoogle Scholar
  91. Gogarten JP, Kibak H, Dittrich P, Taiz L, Bowman EJ, Bowman BJ, Manolson MF, Poole RJ, Date T, Oshimaii T, Konishiii J, Dendaii K, Yoshidaii M (1989) Evolution of the vacuolar H+-ATPase: implications for the origin of eukaryotes. Proc Natl Acad Sci USA 86:6661–6665PubMedGoogle Scholar
  92. Gould SB, Waller RF, McFadden GI (2008) Plastid evolution. Ann Rev Plant Biol 59:491–517Google Scholar
  93. Gratia JP (2007) Spontaneous zygogenesis a wide-ranging mating process in bacteria. Res Microbiol 158:671–678PubMedGoogle Scholar
  94. Gratia JP, Thiry M (2003) Spontaneous zygogenesis in Escherichia coli, a form of true sexuality in prokaryotes. Microbiology 149:2571–2584PubMedGoogle Scholar
  95. Gray MW, Burger G, Lang BF (1999) Mitochondrial evolution. Nature 283:1476–1481Google Scholar
  96. Gray MW, Lukeš J, Archibald JM, Keeling PJ, Doolitle WF (2010) Cell biology. Irremediable complexity? Science 12:920–921Google Scholar
  97. Gribaldo S, Brochier C (2009) Phylogeny of prokaryotes: does it exist and why should we care? Res Microbiol 160:513–521PubMedGoogle Scholar
  98. Gribaldo S, Poole AM, Daubin V, Forterre P, Brochier-Armanet C (2010) The origin of eukaryotes and their relation with Archaea: are we at a phylogenomic impasse? Nat Rev Microbiol 8:743–751PubMedGoogle Scholar
  99. Griffiths G (2007) Cell evolution and the problem of membrane topology. Nat Rev Mol Cell Biol 8:1018–1024PubMedGoogle Scholar
  100. Gupta RS (1998) Life’s third domain (Archaea): an established fact or endangered paradigm? Theor Popul Biol 54:91–104PubMedGoogle Scholar
  101. Gupta RS (2011) Origin of diderm (Gram-negative) bacteria: antibiotic selection pressure rather than endosymbiosis likely led to the evolution of bacterial cells with two membranes. Antonie Van Leeuwenhoek 100:171–182PubMedGoogle Scholar
  102. Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, Simpson AGB, Roger AJ (2009) Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proc Natl Acad Sci USA 106:3859–3864PubMedGoogle Scholar
  103. Harris JK, Kelley ST, Spiegelman GB, Pace NR (2003) The genetic core of the Universal Ancestor. Genome Res 13:407–412PubMedGoogle Scholar
  104. Hartman H, Fedorov A (2002) The origin of the eukaryotic cell: a genomic investigation. Proc Natl Acad Sci USA 99:1420–1425PubMedGoogle Scholar
  105. Hartman H, Favaretto P, Smith TF (2006) The archaeal origins of the eukaryotic translational system. Archaea 2:1–9PubMedGoogle Scholar
  106. Hastings KEM (2005) SL trans-splicing: easy come or easy go? Trends Genet 21:240–247PubMedGoogle Scholar
  107. Hickey DA (1982) Selfish DNA: a sexually-transmitted nuclear parasite. Genetics 101:519–531PubMedGoogle Scholar
  108. Hopwood DA, Wright HM, Bibb MJ, Cohen SN (1977) Genetic recombination through protoplast fusion in Streptomyces. Nature 268:171–174PubMedGoogle Scholar
  109. Horiike T, Hamada K, Kanaya S, Shinozawa T (2001) Origin of nucleic acid cell nuclei by symbiosis of Archaea in Bacteria is revealed by homology-hit analysis. Nat Cell Biol 3:210–214PubMedGoogle Scholar
  110. Horiike T, Hamada K, Miyata D, Shinozawa T (2004) The origin of eukaryotes is suggested as the symbiosis of Pyrococcus into γ-proteobacteria by phylogenetic tree based on gene content. J Mol Evol 59:606–619PubMedGoogle Scholar
  111. Houliston E, Momose T, Manuel M (2010) Clytia hemispherica: a jellyfish cousin joins the laboratory. Trends Genet 26:159–167PubMedGoogle Scholar
  112. Iwabe N, Kuma K, Hasegawa M, Osawa S, Miyata T (1989) Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc Natl Acad Sci USA 86:9355–9359PubMedGoogle Scholar
  113. Jacobs J, Glanz S, Bunse-Grassmann A, Kruse O, Kück U (2010) RNA trans-splicing: identification of components of a putative chloroplast spliceosome. Eur J Cell Biol 89:932–939PubMedGoogle Scholar
  114. Jahn U, Gallenberger M, Paper W, Junglas B, Eisenreich W, Stetter KO, Rachel R, Huber H (2008) Nanoarchaeum equitans and Ignicoccus hospitalis: new insights into a unique, intimate association of two archaea. J Bacteriol 190:1743–1750PubMedGoogle Scholar
  115. Jain R, Rivera MC, Lake JA (1999) Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci USA 96:3801–3806PubMedGoogle Scholar
  116. Jalasvuori M, Bamford JKH (2008) Structural co-evolution of viruses and cells in the primordial world. Orig Life Evol Biosph 38:165–181PubMedGoogle Scholar
  117. Jeffares DC, Poole AM, Penny D (1998) Relics from RNA world. J Mol Evol 46:18–36PubMedGoogle Scholar
  118. Jeffares DC, Mourier T, Penny D (2006) The biology of intron gain and loss. Trends Genet 22:16–22PubMedGoogle Scholar
  119. Jékely G (2003) Small GTPases and the evolution of the eukaryotic cell. Bioessays 25:1129–1138PubMedGoogle Scholar
  120. Jékely G (2006) Did the last common ancestor have a biological membrane? Biol Direct 1:35Google Scholar
  121. Jékely G (2007a) Origin of phagotrophic eukaryotes as social cheaters in microbial biofilms. Biol Direct 2:3PubMedGoogle Scholar
  122. Jékely G (2007b) Origin of eukaryotic endomembranes—a critical evaluation of different model scenarios. Adv Exp Med Biol 607:38–51PubMedGoogle Scholar
  123. Kaganer VM, Möhwald H, Dutta P (1999) Structure and phase transitions in Langmuir monolayers. Rev Mod Phys 71:779–819Google Scholar
  124. Kandler O (1994a) The early diversification of life. In: Bengtson S (ed) Nobel Symposium 84. Early Life on Earth. Columbia University Press, New York, pp 152–160Google Scholar
  125. Kandler O (1994b) Cell wall biochemistry in Archaea and its phylogenetic implications. J Biol Phys 20:165–169Google Scholar
  126. Kandler O (1998) The early diversification of life and the origin of the three domains: a proposal. In: Wiegel J, Adams MWW (eds) Thermophiles: the keys to molecular evolution and the origin of life. Taylor & Francis, London, pp 19–28Google Scholar
  127. Karlberg O, Canbäck B, Kurland CG, Andersson SGE (2000) The dual origin of the yeast mitochondrial proteome. Yeast 17:170–187PubMedGoogle Scholar
  128. Keeling PJ (2009) Chromalveolates and the evolution of plastids by secondary endosymbiosis. J Eukaryot Microbiol 56:1–8PubMedGoogle Scholar
  129. Kelly S, Wickstead B, Gull K (2011) Archaeal phylogenomics provides evidence in support of a methanogenic origin of the Archaea and a thaumarchaeal origin for the eukaryotes. Proc Biol Sci 278:1009–1018PubMedGoogle Scholar
  130. Kierlin-Duncan MN, Sullenger BA (2007) Using 5′-PTMs to repair mutant beta-globin transcripts. RNA 13:1317–1327PubMedGoogle Scholar
  131. Kilian O, Kroth PG (2004) Presequence acquisition during secondary endosymbiosis and the possible role of introns. J Mol Evol 58:712–721PubMedGoogle Scholar
  132. Kim KM, Caetano-Anollés G (2011) The proteomic complexity and rise of the primordial ancestor of diversified life. BMC Evol Biol 11:140PubMedGoogle Scholar
  133. Koga Y (2011) Early evolution of membrane lipids: how did the lipid divide occur? J Mol Evol (in press). doi: 10.1007/s00239-011-9428-5
  134. Koga Y, Kyuragi T, Nishihara M, Sone N (1998) Did archaeal and bacterial cells arise independently from non-cellular precursors? A hypothesis stating that the advent of membrane phospholipids with enantiomeric glycerophosphate backbones caused the separation of the two lines of descent. J Mol Evol 46:54–63PubMedGoogle Scholar
  135. Koonin EV (2006) The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate? Biol Direct 1:22Google Scholar
  136. Koonin EV (2009) Intron-dominated genomes of early ancestors of eukaryotes. J Hered 100:618–623PubMedGoogle Scholar
  137. Koonin EV, Martin W (2005) On the origin of genomes within inorganic compartments. Trends Genet 21:647–654PubMedGoogle Scholar
  138. Krause M, Hirsh D (1987) A trans-spliced leader sequence on actin mRNA in C. elegans. Cell 49:753–761PubMedGoogle Scholar
  139. Krylov DM, Nasmyth K, Koonin EV (2003) Evolution of eukaryotic cell cycle regulation: stepwise addition of regulatory kinases and late advent of CDKs. Curr Biol 13:173–177PubMedGoogle Scholar
  140. Kubo N, Harada K, Hirai A, Kadowaki K (1999) A single nuclear transcript encoding mitochondrial RPS14 and SDHB of rice is processed by alternative splicing: Common use of the same mitochondrial targeting signal for different proteins. Proc Natl Acad Sci USA 96:9207–9211PubMedGoogle Scholar
  141. Küper U, Meyer C, Müller V, Rachel R, Huber H (2010) Energized outer membrane and spatial separation of metabolic processes in the hyperthermophilic Archaeon Ignicoccus hospitalis. Proc Natl Acad Sci USA 107:3152–3156PubMedGoogle Scholar
  142. Kurland CG, Andersson SGE (2000) Origins and evolution of the mitochondrial proteome. Microbiol Mol Biol Rev 64:786–820PubMedGoogle Scholar
  143. Kurland CG, Canbäck B, Berg OG (2003) Horizontal gene transfer: a critical view. Proc Natl Acad Sci USA 100:9658–9662PubMedGoogle Scholar
  144. Kurland CG, Collins LJ, Penny D (2006) Genomics and the irreducible nature of eukaryote cells. Science 312:1011–1014PubMedGoogle Scholar
  145. Kurland CG, Canbäck B, Berg OG (2007) The origins of modern proteomes. Biochimie 89:1454–1463PubMedGoogle Scholar
  146. Kuwabara T, Minaba M, Iwayama Y, Inouye I, Nakashima M, Marumo K, Maruyama A, Sugai A, Itoh T, Ishibashi J, Urabe T, Kamekura M (2005) Thermococcus coalescens sp. nov., a cell-fusing hyperthermophilic archaeon from Suiyo Seamount. Int J Syst Evol Microbiol 55:2507–2514PubMedGoogle Scholar
  147. Kuwabara T, Minaba M, Ogi N, Kamekura M (2007) Thermococcus celericrescens sp. nov., a fast-growing and cell-fusing hyperthermophilic archaeon from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 57:437–443PubMedGoogle Scholar
  148. Lake JA (1988) Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences. Nature 331:184–186PubMedGoogle Scholar
  149. Lake JA, Skophammer RG, Herbold CW, Servin JA (2009) Genome beginnings: rooting the tree of life. Phil Trans R Soc Lond B Biol Sci 364:2177–2185Google Scholar
  150. Lane N, Martin W (2010) The energetics of genome complexity. Nature 467:929–934PubMedGoogle Scholar
  151. Lang KM, Spritz RA (1987) In vitro splicing pathways of pre-mRNAs containing multiple intervening sequences. Mol Cell Biol 7:3428–3437PubMedGoogle Scholar
  152. Lang DF, Gray MW, Burger G (1999) Mitochondrial genome evolution and the origin of eukaryotes. Ann Rev Gen 33:351–397Google Scholar
  153. Lee KC, Webb R, Fuerst JA (2009a) The cell cycle of the planctomycete Gemmata obscuriglobus with respect to compartmentation. BMC Cell Biol 10:4PubMedGoogle Scholar
  154. Lee KC, Webb RI, Janssen PH, Sangwan P, Romeo T, Staley JT, Fuerst JA (2009b) Phylum Verrucomicrobia representatives share a compartmentalized cell plan with members of bacterial phylum Planctomycetes. BMC Microbiol 9:5Google Scholar
  155. Leipe DD, Aravind L, Koonin EV (1999) Did DNA replication evolve twice independently? Nucleic Acids Res 27:3389–3401PubMedGoogle Scholar
  156. Lidie KB, van Dolah FM (2007) Spliced leader RNA-mediated trans-splicing in a dinoflagellate, Karenia brevis. J Eukaryot Microbiol 54:427–435PubMedGoogle Scholar
  157. Lidie KB, Ryan JC, Barbier M, Van Dolah FM (2005) Gene expression in Florida red tide dinoflagellate Karenia brevis: analysis of an expressed sequence tag library and development of DNA microarray. Mar Biotechnol (NY) 7:481–493Google Scholar
  158. Lindsay MR, Webb RI, Strous M, Jetten MS, Butler MK, Forde RJ, Fuerst JA (2001) Cell compartmentalisation in planctomycetes: novel types of structural organisation for the bacterial cell. Arch Microbiol 175:413–429PubMedGoogle Scholar
  159. Lombard J, Moreira D (2011) Origins and early evolution of the mevalonate pathway of isoprenoid biosynthesis in the three domains of life. Mol Biol Evol 28:87–99PubMedGoogle Scholar
  160. Long M, de Souza SJ, Rosenberg C, Gilbert W (1996) Exon shuffling and the origin of the mitochondrial targeting function in plant cytochrome c1 precursor. Proc Natl Acad Sci USA 93:7727–7731PubMedGoogle Scholar
  161. Lonhienne TG, Sagulenko E, Webb RI, Lee KC, Franke J, Devos DP, Nouwens A, Carroll BJ, Fuerst JA (2010) Endocytosis-like protein uptake in the bacterium Gemmata obscuriglobus. Proc Natl Acad Sci USA 107:12883–12888PubMedGoogle Scholar
  162. López-García P, Moreira D (2001) The syntrophy hypothesis for the origin of eukaryotes. In: Seckbach J (ed) Symbiosis: mechanisms and models. Kluwer Academic Publishers, Dordrecht, pp 131–146Google Scholar
  163. López-García P, Moreira D (2006) Selective forces for the origin of the eukaryotic nucleus. Bioessays 28:525–533PubMedGoogle Scholar
  164. Lukeš J, Leander BS, Keeling PJ (2009) Cascades of convergent evolution: the corresponding evolutionary histories of euglenozoans and dinoflagellates. Proc Natl Acad Sci USA 106:9963–9970PubMedGoogle Scholar
  165. Lukeš J, Archibald JM, Keeling PJ, Doolittle WF, Gray MW (2011) How a neutral evolutionary ratchet can build cellular complexity. IUBMB Life 63:528–537PubMedGoogle Scholar
  166. Lynch M (2007) The origins of genome architecture. Sinauer, SunderlandGoogle Scholar
  167. Makarova KS, Yutin N, Bell SD, Koonin EV (2010) Evolution of diverse cell division and vesicle formation systems in Archaea. Nat Rev Microbiol 8:731–741PubMedGoogle Scholar
  168. Mansfield SG, Clark RH, Puttaraju M, Kole J, Cohn JA, Mitchell LG, Garcia-Blanco MA (2003) 5′ exon replacement and repair by spliceosome-mediated RNA trans-splicing. RNA 9:1290–1297PubMedGoogle Scholar
  169. Margulis L, Dolan MF, Guerrero R (2000) The chimeric eukaryote: origin of the nucleus from the karyomastigont in amitochondriate protists. Proc Natl Acad Sci USA 97:6954–6959PubMedGoogle Scholar
  170. Margulis L, Chapman M, Guerrero R, Hall J (2006) The last eukaryotic common ancestor (LECA): acquisition of cytoskeletal motility from aerotolerant spirochetes in the Proterozoic Eon. Proc Natl Acad Sci USA 103:13080–13085PubMedGoogle Scholar
  171. Marletaz F, Gilles A, Caubit X, Perez Y, Dossat C, Samain S, Gyapay G, Wincker P, Le Parco Y (2008) Chaetognath transcriptome reveals ancestral and unique features among bilaterians. Genome Biol 9:R94PubMedGoogle Scholar
  172. Martin W, Koonin EV (2006) Introns and the origin of nucleus-cytosol compartmentalization. Nature 440:41–45PubMedGoogle Scholar
  173. Martin W, Müller M (1998) The hydrogen hypothesis for the first eukaryote. Nature 392:37–41PubMedGoogle Scholar
  174. Martin W, Russell MJ (2003) On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Phil Trans R Soc Lond B 358:59–85Google Scholar
  175. Mat WK, Xue H, Wong JT (2008) The genomics of LUCA. Front Biosci 13:5605–5613PubMedGoogle Scholar
  176. Maynard Smith J, Szathmáry E (1995) The major evolutionary transitions. W. II. Freeman, OxfordGoogle Scholar
  177. McInerney JO, Martin WF, Koonin EV, Allen JF, Galperin MY, Lane N, Archibald JM, Embley TM (2011) Planctomycetes and eukaryotes: a case of analogy not homology. Bioessays (in press). doi: 10.1002/bies.201100045
  178. Moreira D, López-García P (1998) Symbiosis between methanogenic archaea and δ-proteobacteria as the origin of eukaryotes: the Syntrophic hypothesis. J Mol Evol 47:517–530PubMedGoogle Scholar
  179. Morigaki K, Dallavalle S, Walde P, Colonna S, Luisi PL (1997) Autopoietic self-reproduction of a chiral fatty acid vesicles. J Am Chem Soc 119:292–301Google Scholar
  180. Murphy W, Watkins K, Agabian N (1986) Identification of a novel Y branch structure in trypanosome mRNA processing: evidence for trans-splicing. Cell 47:517–525PubMedGoogle Scholar
  181. Nassoy P, Goldman M, Bouloussa O, Rondolez F (1995) Spontaneous chiral segregation in bidimensional films. Phys Rev Lett 75:457–460PubMedGoogle Scholar
  182. Nather DJ, Rachel R (2004) The outer membrane of the hyperthermophilic archaeon Ignicoccus: dynamics, ultrastructure and composition. Biochem Soc Trans 32:199–203PubMedGoogle Scholar
  183. Neumann N, Lundin D, Poole AM (2010) Comparative genomic evidence for a complete nuclear pore complex in the last eukaryotic common ancestor. PloS One 5:e13241PubMedGoogle Scholar
  184. Nozaki H, Maruyama S, Matsuzaki M, Nakada T, Kato S, Misawa K (2009) Phylogenetic positions of Glaucophyta, green plants (Archaeplatida) and Haptophyta (Chromalveolata) as deduced from slowly evolving nuclear genes. Mol Phylogenet Evol 53:872–880PubMedGoogle Scholar
  185. O’Connor T, Sundberg K, Carroll H, Clement M, Snell Q (2010) Analysis of long branch extraction and long branch shortening. BMC Genomics 11:S14PubMedGoogle Scholar
  186. O’Reilly AJ, Dacks JB, Field MC (2011) Evolution of the karyopherin-β family of nucleocytoplasmic transport factors; ancient origins and continued specialization. PLoS One 6:e19308PubMedGoogle Scholar
  187. Otto SP, Lenormand T (2002) Resolving the paradox of sex and recombination. Nat Rev Genet 3:252–261PubMedGoogle Scholar
  188. Palmer JD (2003) The symbiotic birth and spread of plastids: How many times and whodunit? J Phycol 39:4–11Google Scholar
  189. Panigrahi AK, Ernst NL, Domingo GJ, Fleck M, Salavati R, Stuart KD (2006) Compositionally and functionally distinct editosomes in Trypanosoma brucei. RNA 2:1038–1049Google Scholar
  190. Parfrey LW, Barbero E, Lasser E, Dunthorn M, Bhattacharya D, Patterson DJ, Katz LA (2006) Evaluating support for the current classification of eukaryotic diversity. PLoS Genet 2:e220PubMedGoogle Scholar
  191. Patron NJ, Durnford DG, Kopriva S (2008) Sulfate assimilation in eukaryotes: fusions, relocations and lateral transfers. BMC Evol Biol 8:39PubMedGoogle Scholar
  192. Patthy L (1999) Genome evolution and the evolution of exon-shuffling–A review. Gene 238:103–114PubMedGoogle Scholar
  193. Penny D, Poole AM (1999) The nature of the last universal common ancestor. Curr Opin Gen Dev 9:672–677Google Scholar
  194. Penny D, Hoeppner MP, Poole AM, Jeffares DC (2009) An overview of the introns-first theory. J Mol Evol 69:527–540PubMedGoogle Scholar
  195. Peretó J, López-García P, Moreira D (2004) Ancestral lipid biosynthesis and early membrane evolution. Trends Biochem Sci 29:469–477PubMedGoogle Scholar
  196. Pertseva MN, Shpakov AO (2009) The prokaryotic origin and evolution of eukaryotic chemosignaling systems. Neurosci Behav Physiol 39:793–804PubMedGoogle Scholar
  197. Pettitt J, Harrison N, Stansfield I, Connolly B, Müller B (2010) The evolution of spliced leader trans-splicing in nematodes. Biochem Soc Trans 38:1125–1130PubMedGoogle Scholar
  198. Pilhofer M, Rappl K, Eckl C, Bauer AP, Ludwig W, Schleifer KH, Petroni G (2008) Characterization and evolution of cell division and cell wall synthesis genes in the bacterial phyla Verrucomicrobia, Lentisphaerae, Chlamydiae, and Planctomycetes and phylogenetic comparison with rRNA genes. J Bacteriol 190:3192–3202PubMedGoogle Scholar
  199. Pina M, Bize A, Forterre P, Prangishvili D (2011) The archeoviruses. FEMS Microbiol Rev (in press). doi: 10.1111/j.1574-6976.2011.00280.x
  200. Pisani D, Cotton JA, McInerney JO (2007) Supertrees disentangle the chimeric origin of eukaryotic genomes. Mol Biol Evol 24:1752–1760PubMedGoogle Scholar
  201. Poole AM (2006) Did group II intron proliferation in an endosymbiont-bearing archaeon create eukaryotes? Biol Direct 1:36Google Scholar
  202. Poole AM (2009) Horizontal gene transfer at the earliest stages of the evolution of life. Res Microbiol 160:473–480PubMedGoogle Scholar
  203. Poole AM, Logan DT (2005) Modern mRNA proofreading and repair: clues that the last universal common ancestor possessed an RNA genome? Mol Biol Evol 22:1444–1455PubMedGoogle Scholar
  204. Poole AM, Neumann N (2011) Reconciling an archaeal origin of eukaryotes with engulfment: a biologically plausible update of the Eocyte hypothesis. Res Microbiol 162:71–76PubMedGoogle Scholar
  205. Poole AM, Penny D (2007) Evaluating hypotheses for the origin of eukaryotes. Bioessays 29:74–84PubMedGoogle Scholar
  206. Poole AM, Jeffares D, Penny D (1998) The path from RNA world. J Mol Evol 46:1–17PubMedGoogle Scholar
  207. Poole AM, Jeffares D, Penny D (1999) Prokaryotes, the new kids on the block. Bioessays 21:880–889PubMedGoogle Scholar
  208. Popper K (1959) The logic of scientific discovery. Basic Books, New YorkGoogle Scholar
  209. Pouchkina-Stantcheva N, Tunnacliffe A (2005) Splice leader RNA-mediated trans-splicing in Phylum Rotifera. Mol Biol Evol 22:1482–1489PubMedGoogle Scholar
  210. Rachel R, Wyschkony I, Riehl S, Huber H (2002) The ultrastructure of Ignicoccus: evidence for a novel outer membrane and for intracellular vesicle budding in an archaeon. Archaea 1:9–18PubMedGoogle Scholar
  211. Rest JS, Mindell DP (2003) Retroids in archaea: phylogeny and lateral origins. Mol Biol Evol 20:1134–1142PubMedGoogle Scholar
  212. Rice WR (2002) Experimental tests of the adaptive significance of sexual recombination. Nat Rev Genet 3:241–251PubMedGoogle Scholar
  213. Rivera MC, Lake JA (2004) The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 431:152–155PubMedGoogle Scholar
  214. Rodríguez-Trelles F, Tarrío R, Ayala FJ (2006) Origins and evolution of spiceosomal introns. Annu Rev Genet 40:47–76PubMedGoogle Scholar
  215. Rogerson ML, Robinson BH, Bucak S, Walde P (2006) Kinetic studies of the interaction of fatty acids with phosphatidylcholine vesicles (liposomes). Colloids Surf B Biointerfaces 48:24–34PubMedGoogle Scholar
  216. Sackmann E (1982) Physikalische grundlagen der molekularen organisation und dynamik von membranen. In: Hoppe W, Lohmann W, Markl H, Ziegler H (eds) Biophysik. Springer, Berlin, pp 439–471Google Scholar
  217. Saier MH Jr (1994) Protein uptake into E. coli during Bdellovibrio infection. A process of reverse secretion? FEBS Lett 337:14–17PubMedGoogle Scholar
  218. Sales-Pardo M, Chan AOB, Amaral LAN, Guimerà R (2007) Evolution of protein families: is it possible to distinguish between domains of life? Gene 402:81–93PubMedGoogle Scholar
  219. Samson RY, Obita T, Freund SM, Williams RL, Bell SD (2008) A role for the ESCRT system in cell division in archaea. Science 322:1710–1713PubMedGoogle Scholar
  220. Santarella-Mellwig R, Franke J, Jaedicke A, Gorjanacz M, Bauer U, Budd A, Mattaj IW, Devos DP (2010) The compartmentalized bacteria of the Planctomycetes–Verrucomicrobia–Chlamydiae superphylum have membrane coat-like proteins. PLoS Biol 8:e1000281PubMedGoogle Scholar
  221. Saruhashi S, Hamada K, Miyata D, Horiike T, Shinozawa T (2008) Comprehensive analysis of the origin of eukaryotic genomes. Genes Genet Syst 83:285–291PubMedGoogle Scholar
  222. Schaeffer P, Cami B, Hotchkiss RD (1976) Fusion of bacterial protoplasts. Proc Natl Acad Sci USA 73:2151–2155PubMedGoogle Scholar
  223. Schmidt U, Podar M, Stahl U, Perlman PS (1996) Mutations of the two-nucleotide bulge of D5 of a group II intron block splicing in vitro and in vivo: phenotypes and suppressor mutations. RNA 2:1161–1172PubMedGoogle Scholar
  224. Schneider A, Bursa D, Lithgow T (2008) The direct route: a simplified pathway for protein import into the mitochondrion of trypanosomes. Trends Cell Biol 18:12–18PubMedGoogle Scholar
  225. Searcy DG (2003) Metabolic integration during the evolutionary origin of mitochondria. Cell Res 13:229–238PubMedGoogle Scholar
  226. Shimada H, Yamagishi A (2011) Stability of heterochiral hybrid membrane made of bacterial sn-G3P lipids and archaeal sn-G1P lipids. Biochemistry 50:4114–4120PubMedGoogle Scholar
  227. Shinozawa T, Horiike T, Hamada K (2001) Nucleus symbiosis hypothesis: formation of eukaryotic cell nuclei by the symbiosis of Archaea in Bacteria. In: Seckbach J (ed) Symbiosis: mechanisms and models. Kluwer Academic Publishers, Dordrecht, pp 229–235Google Scholar
  228. Skophammer RG, Servin JA, Herbold CW, Lake JA (2007) Evidence for a Gram positive, eubacterial root of the tree of life. Mol Biol Evol 24:1761–1768PubMedGoogle Scholar
  229. Sorek R, Zhu Y, Creevey CJ, Francino MP, Bork P, Rubin EM (2007) Genome-wide experimental determination of barriers to horizontal gene transfer. Science 318:1449–1452PubMedGoogle Scholar
  230. Speijer D (2011) Does constructive neutral evolution play an important role in the origin of cellular complexity? Making sense of the origins and uses of biological complexity. Bioessays 33:344–349PubMedGoogle Scholar
  231. Sterrer W (2002) On the origin of sex as vaccination. J Theor Biol 216:387–396PubMedGoogle Scholar
  232. Stoltzfus A (1999) On the possibility of constructive neutral evolution. J Mol Evol 49:169–181PubMedGoogle Scholar
  233. Stover N, Steele R (2001) Trans-spliced leader addition to mRNAs in a cnidarian. Proc Natl Acad Sci 98:5693–5698PubMedGoogle Scholar
  234. Strous M, Pelletier E, Mangenot S, Rattei T, Lehner A, Taylor MW, Horn M, Daims H, Bartol-Mavel D, Wincker P, Barbe V, Fonknechten N, Vallenet D, Segurens B, Schenowitz-Truong C, Médigue C, Collingro A, Snel B, Dutilh BE, Op den Camp HJ, van der Drift C, Cirpus I, van de Pas-Schoonen KT, Harhangi HR, van Niftrik L, Schmid M, Keltjens J, van de Vossenberg J, Kartal B, Meier H, Frishman D, Huynen MA, Mewes HW, Weissenbach J, Jetten MS, Wagner M, Le Paslier D (2006) Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440:790–794PubMedGoogle Scholar
  235. Tamura A, Matsumoto A, Manire GP, Higashi N (1971) Electron microscopic observations on the structure of the envelopes of mature elementary bodies and developmental reticulate forms of Chlamydia psittaci. J Bacteriol 105:355–360PubMedGoogle Scholar
  236. Tekle YI, Grant JR, Kovner AH, Townsend JP, Katz LA (2010) Identification of new molecular markers for assembling the eukaryotic tree of life. Mol Phylogenet Evol 55:1177–1182PubMedGoogle Scholar
  237. Tessier LH, Keller M, Chan RL, Fournier R, Weil JH, Imbault P (1991) Short leader sequences may be transferred from small RNAs to pre-mature mRNAs by trans-splicing in Euglena. EMBO J 10:2621–2625PubMedGoogle Scholar
  238. Tourasse NJ, Gouy M (1999) Accounting for evolutionary rate variation among sequence sites consistently changes universal phylogenies deduced from rRNA and protein-coding genes. Mol Phylogenet Evol 13:159–168PubMedGoogle Scholar
  239. Toxvaerd S (2009) Origin of homochirality in biosystems. Int J Mol Sci 10:1290–1299PubMedGoogle Scholar
  240. Uragami M, Miyake Y, Regen SL (2000) Influence of headgroup chirality on the mixing behavior of phophatidylglycerol mimics in fluid bilayers. Langmuir 16:3491–3496Google Scholar
  241. Valadkhan S, Jaladat Y (2010) The spliceosomal proteome: at the heart of the largest cellular ribonucleoprotein machine. Proteomics 10:4128–4141PubMedGoogle Scholar
  242. Valentine DL (2007) Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nat Rev Microbiol 5:316–323PubMedGoogle Scholar
  243. van Niftrik L, van Helden M, Kirchen S, van Donselaar EG, Harhangi HR, Webb RI, Fuerst JA, Op den Camp HJ, Jetten MS, Strous M (2010) Intracellular localization of membrane-bound ATPases in the compartmentalized anammox bacterium ‘Candidatus Kuenenia stuttgartiensis′. Mol Microbiol 77:701–715PubMedGoogle Scholar
  244. Vendenberghe A, Meedel T, Hastings K (2001) mRNA 5′-leader trans-splicing in the chordates. Genes Dev 15:294–303Google Scholar
  245. Vesteg M, Krajčovič J (2007) On the origin of meiosis and sex. Riv Biol 100:147–161PubMedGoogle Scholar
  246. Vesteg M, Krajčovič J (2008a) On the origin of eukaryotic cytoskeleton. Riv Biol 101:47–56Google Scholar
  247. Vesteg M, Krajčovič J (2008b) Origin of eukaryotic cells as a symbiosis of parasitic α-proteobacteria in the periplasm of two-membrane-bounded sexual pre-karyotes. Commun Integr Biol 1:104–113PubMedGoogle Scholar
  248. Vesteg M, Krajčovič J (2010) The origin of Eukarya as a stress response of two-membrane-bounded sexual pre-karyote to an aggressive alphaproteobacterial periplasmic infection. In: Seckbach J, Grube M (eds) Symbioses and stress: joint ventures in biology, cellular origin, life in extreme habitats and astrobiology, vol 17. Springer Science+Business Media B.V., Hidelberg, pp 63–81Google Scholar
  249. Vesteg M, Krajčovič J, Ebringer L (2006) On the origin of eukaryotes and their endomembranes. Riv Biol 99:445–466Google Scholar
  250. Vesteg M, Vacula R, Burey S, Löffelhardt W, Drahovská H, Martin W, Krajčovič J (2009a) Expression of nucleus-encoded genes for chloroplast proteins in the flagellate Euglena gracilis. J Eukaryot Microbiol 56:159–166PubMedGoogle Scholar
  251. Vesteg M, Vacula R, Krajčovič J (2009b) On the origin of chloroplasts, import mechanisms of chloroplast-targeted proteins, and loss of photosynthetic ability. Folia Microbiol (Praha) 54:303–321Google Scholar
  252. Vesteg M, Vacula R, Steiner JM, Mateášiková B, Löffelhardt W, Brejová B, Krajčovič J (2010) A possible role for short introns in the acquisition of stroma-targeting peptides in the flagellate Euglena gracilis. DNA Res 17:223–231PubMedGoogle Scholar
  253. Vollhardt D, Emrich G, Gutberlet T, Fuhrhop JH (1996) Chiral discrimination and pattern formation in N-dodecylmannonamide monolayers at the air-water interphase. Langmuir 12:5659–5663Google Scholar
  254. von Dohlen CD, Kohler S, Alsop ST, McManus WR (2001) Mealybug β-proteobacterial endosymbionts contain γ-proteobacterial symbionts. Nature 412:433–436Google Scholar
  255. Wächtershäuser G (1988) Before enzymes and templates: theory of surface metabolism. Microbiol Rev 52:452–484PubMedGoogle Scholar
  256. Wächtershäuser G (1992) Groundworks for an evolutionary biochemistry–the iron-sulfur world. Prog Biophys Mol Biol 58:85–201PubMedGoogle Scholar
  257. Wächtershäuser G (2003) From pre-cells to Eukarya—a tale of two lipids. Mol Microbiol 47:13–22PubMedGoogle Scholar
  258. Wächtershäuser G (2006) From volcanic origins of chemoautotrophic life to Bacteria, Archaea and Eukarya. Phil Trans R Soc B 361:1787–1808PubMedGoogle Scholar
  259. Wally V, Klausegger A, Koller U, Lochmüller H, Krause S, Wiche G, Mitchell LG, Hintner H, Bauer JW (2008) 5′ trans-splicing repair of the PLEC1 gene. J Invest Dermatol 128:568–574PubMedGoogle Scholar
  260. Wernegreen JJ (2005) For better or worse: genomic consequences of intracellular mutualism and parasitism. Curr Opin Genet Dev 15:572–583PubMedGoogle Scholar
  261. Wischmann C, Schuster W (1995) Transfer of rps10 from the mitochondrion to the nucleus in Arabidopsis thaliana: Evidence for RNA-mediated transfer and exon shuffling at the integration site. FEBS Lett 374:152–156PubMedGoogle Scholar
  262. Woese CR (1983) The primary lines of descent and the universal ancestor. In: Bendall DS (ed) Evolution from molecules to men. Cambridge University Press, Cambridge, pp 209–233Google Scholar
  263. Woese CR (1987) Bacterial evolution. Microbiol Res 51:221–271Google Scholar
  264. Woese CR (1998) The universal ancestor. Proc Natl Acad Sci USA 95:6854–6859PubMedGoogle Scholar
  265. Woese CR (2000) Interpreting the universal phylogenetic tree. Proc Natl Acad Sci USA 97:8392–8396PubMedGoogle Scholar
  266. Woese CR (2002) On the evolution of cells. Proc Natl Acad Sci USA 99:8742–8747PubMedGoogle Scholar
  267. Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74:5088–5090PubMedGoogle Scholar
  268. Woese CR, Kandler O, Wheelis ML (1990) Toward a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eukarya. Proc Natl Acad Sci USA 87:4576–4579PubMedGoogle Scholar
  269. Wong JT-Z, Chen J, Mat W-K, Ng S-K, Xue H (2007) Polyphasic evidence delineating the root of life and roots of biological domains. Gene 403:39–52PubMedGoogle Scholar
  270. Woolfit M, Bromham L (2003) Increased rates of sequence evolution in endosymbiotic bacteria and fungi with small effective population sizes. Mol Biol Evol 20:1545–1555PubMedGoogle Scholar
  271. Yutin N, Makarova KS, Mekhedov SL, Wolf YI, Koonin EV (2008) The deep archaeal roots of eukaryotes. Mol Biol Evol 25:1619–1630PubMedGoogle Scholar
  272. Yutin N, Wolf MY, Wolf YI, Koonin EV (2009) The origins of phagocytosis and eukaryogenesis. Biol Direct 4:9PubMedGoogle Scholar
  273. Zenkin N, Yuzenkova Y, Severinov K (2006) Transcript-assisted transcriptional proofreading. Science 313:518–520PubMedGoogle Scholar
  274. Zhang H, Lin S (2009) Retrieval of missing spliced leader in dinoflagellates. PLoS One 4:e4129PubMedGoogle Scholar
  275. Zhang H, Hou Y, Miranda L, Campbell DA, Sturm NR, Gaasterland T, Lin S (2007) Spliced leader RNA trans-splicing in dinoflagellates. Proc Natl Acad Sci 104:4618–4623PubMedGoogle Scholar
  276. Zhaxybayeva O, Lapierre P, Gogarten JP (2005) Ancient gene duplications and the root(s) of the tree of life. Protoplasma 227:53–64PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Genetics, Faculty of Natural SciencesComenius UniversityBratislavaSlovakia
  2. 2.Faculty of Natural SciencesInstitute of Cell Biology and Biotechnology, Comenius UniversityBratislavaSlovakia

Personalised recommendations