Advertisement

Current Genetics

, Volume 57, Issue 4, pp 241–251 | Cite as

Molecular and functional characterization of an endoglucanase in the phytopathogenic fungus Pyrenochaeta lycopersici

  • Maria Teresa Valente
  • Alessandro Infantino
  • Maria Aragona
Research Article

Abstract

Many fungal plant pathogens secrete an array of cell wall degrading enzymes mainly involved in the pathogenesis. In this work, a cDNA clone encoding an extracellular endo-1,4-β-glucanase (named PlEGL1) from the causal agent of the Corky Root Rot of tomato, Pyrenochaeta lycopersici, was isolated and characterized, in order to understand its putative role in the pathogenesis and its mechanism of action. Multiple alignment of the deduced amino acidic sequence shows a high homology with other endoglucanases from different phytopathogenic fungi and detects a well-defined conserved domain of the Glycosyl Hydrolase family 61 (GH61). In vitro, Plegl1 gene transcription is correlated to a cellulolytic activity of the fungus, regulated, in its turn, by the presence of sugar and/or cellulose in the culture medium. In the infected plants, expression level of Plegl1 is positively correlated to the development of the disease. PlEGL1 was heterologously expressed in Escherichia coli and the recombinant protein was purified and tested for its cellulolytic ability, showing a very weak activity, in agreement with all the endoglucanases belonging to GH61 family. The finding in this paper will provide the basis for further determination of biochemical properties of the PlEGL1 protein and its possible involvement in the host–pathogen interaction.

Keywords

Pyrenochaeta lycopersici Cell wall degrading enzymes Endo-1,4-β-glucanase Pathogenicity 

Notes

Acknowledgments

This work was performed within the framework of the project RESPAT: “Identificazione di geni implicati nella resistenza e nella patogenicità in interazioni tra piante d’interesse agrario e patogeni fungini, batterici e virali”.

References

  1. Aragona M, Infantino A (2008) Expression profiling of tomato response to Pyrenochaeta lycopersici infection. Acta Hortic 789:257–263Google Scholar
  2. Bauer S, Vasu P, Persson S, Mort AJ, Somerville CR (2006) Development and application of a suite of polysaccharide-degrading enzymes for analyzing plant cell walls. Proc Natl Acad Sci USA 103:11417–11422PubMedCrossRefGoogle Scholar
  3. Benhamou N, Côté F (1992) Ultrastructure and cytochemistry of pectin and cellulose degradation in tobacco roots infected by Phytophthora parasitica var. nicotianae. Phytopathology 82:468–478CrossRefGoogle Scholar
  4. Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  5. Brunner PC, Keller N, McDonald BA (2009) Wheat domestication accelerated evolution and triggered positive selection in the β-xylosidase enzyme of Mycosphaerella graminicola. PLoS One 4:e7884PubMedCrossRefGoogle Scholar
  6. Campbell RN, Hall DH, Schweers VH (1982) Corky root of tomato in California caused by Pyrenochaeta lycopersici and control by soil fumigation. Plant Dis 66:657–661CrossRefGoogle Scholar
  7. Cenis JL (1992) Rapid extraction of fungal DNA for PCR amplification. Nucleic Acids Res 20:2380PubMedCrossRefGoogle Scholar
  8. Coleman JJ, Rounsley SD, Rodriguez-Carres M, Kuo A, Wasmann CC, Grimwood J, Schmutz J, Taga M, White GJ, Zhou S, Schwartz DC, Freitag M, Ma LJ, Danchin EG, Henrissat B, Coutinho PM, Nelson DR, Straney D, Napoli CA, Barker BM, Gribskov M, Rep M, Kroken S, Molnár I, Rensing C, Kennell JC, Zamora J, Farman ML, Selker EU, Salamov A, Shapiro H, Pangilinan J, Lindquist E, Lamers C, Grigoriev IV, Geiser DM, Covert SF, Temporini E, Vanetten HD (2009) The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion. PLoS Genetic 5(8):e1000618CrossRefGoogle Scholar
  9. Cooper RM (1983) The mechanisms and significance of enzymatic breakdown of host cell walls by parasites. In: Callow JA (ed) Biochemical plant pathology. Wiley, New York, pp 101–135Google Scholar
  10. Coutinho PM, Henrisaat B (1999) Carbohydrate-active enzymes: an integrated database approach. In: Gilbert HJ, Davies GJ, Henrisaat B, Svensson B (eds) Recent advances in carbohydrate bioengineering. The Royal Society of Chemistry, Cambridge, pp 3–12Google Scholar
  11. Ellwood SR, Liu Z, Symel RA, Lai Z, Hane JK, Keiper F, Moffat CS, Oliver RP, Friesen TL (2010) A first genome assembly of the barley fungal pathogen Pyrenophora teres f. teres. Genome Biol 11:R109PubMedGoogle Scholar
  12. Foreman PK, Brown D, Dankmeyer L, Dean R, Diener S, unn-Coleman NS, Goedegebuur F, Houfek TD, England GJ, Kelley AS, Meerman HJ, Mitchell T, Mitchinson C, Olivares HA, Teunissen PJ, Yao J, Ward M (2003) Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei. J Biol Chem 278:31988–31997PubMedCrossRefGoogle Scholar
  13. Gerlach W, Schneider R (1964) Nachweis eines Pyrenochaeta-Stadiums bei Stammen des Korkwurzelerregers der Tomate. Phytopathologische Zeitschrift 50:262–269CrossRefGoogle Scholar
  14. Goodenough PW, Kempton RJ (1974) Regulation of the synthesis of an extracellular polygalacturonase by Pyrenochaeta lycopersici when grown in media with limited carbon source. Phytopathology 81:78–84CrossRefGoogle Scholar
  15. Goodenough PW, Kempton RJ (1976) The activity of cell wall degrading enzymes in tomato roots infected with Pyrenochaeta lycopersici and the effect of sugar concentrations in these roots on disease development. Physiol Plant Pathol 9:313–320CrossRefGoogle Scholar
  16. Goodenough PW, Kempton RJ, Maw GA (1976) Studies on the root rotting fungus Pyrenochaeta lycopersici: extracellular enzyme secretion by the fungus grown on cell wall material from susceptible and tolerant tomato plants. Physiol Plant Pathol 8:243–251CrossRefGoogle Scholar
  17. Gough CL, Dow JM, Barber CE, Daniels MJ (1988) Cloning of two endoglucanase genes of Xanthomonas campestris pv. campestris: analysis of the role of the major endoglucanase in pathogenesis. Mol Plant Microbe Interact 1:275–281CrossRefGoogle Scholar
  18. Harris PV, Welner D, McFarland KC, Re E, Navarro Poulsen JC, Brown K, Salbo R, Ding H, Vlasenko E, Merino S, Xu F, Cherry J, Larsen S, Lo Leggio L (2010) Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 49:3305–3316PubMedCrossRefGoogle Scholar
  19. Hématy K, Cherk C, Somerville S (2009) Host pathogen warfare at the plant cell wall. Curr Opin Plant Biol 12:406–413PubMedCrossRefGoogle Scholar
  20. Hok S, Attard A, Keller H (2010) Getting the most from the host: how pathogens force plants to cooperate in disease. Mol Plant Microbe Interact 23:1253–1259PubMedCrossRefGoogle Scholar
  21. Hückelhoven R (2007) Cell wall-associated mechanisms of disease resistance and susceptibility. Annu Rev Phytopathol 45:101–127PubMedCrossRefGoogle Scholar
  22. Infantino A, Pucci N (2005) A PCR-based assay for the detection and identification of Pyrenochaeta lycopersici. Eur J Plant Pathol 112:337–347CrossRefGoogle Scholar
  23. Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with Clustal X. Trends Biochem Sci 23:403–405PubMedCrossRefGoogle Scholar
  24. Kamoun S (2006) A catalogue of the effector secretome of plant pathogenic oomycetes. Annu Rev Phytopathol 44:41–60PubMedCrossRefGoogle Scholar
  25. Karkehabadi S, Hansson H, Kim S, Piens K, Mitchinson C, Sandgren M (2008) The first structure of a glycoside hydrolase family 61 member, Cel61B from Hypocrea jecorina, at 1.6 Å resolution. J Mol Biol 383:144–154PubMedCrossRefGoogle Scholar
  26. Karlsson J, Saloheimo M, Siika-Aho M, Tenkanen M, Penttila M, Tjerneld F (2001) Homologous expression and characterization of Cel61A (EG IV) of Trichoderma reesei. Eur J Biochem 268:6498–6507PubMedCrossRefGoogle Scholar
  27. Kasana RC, Salwan R, Dhar H, Dutt S, Gulati A (2008) A rapid and easy method for the detection of microbial cellulases on agar plates using gram’s iodine. Curr Microbiol 57:503–507PubMedCrossRefGoogle Scholar
  28. Koseki T, Mese Y, Fushinobu S, Masaki K, Fujii T, Ito K, Shiono Y, Murayama T, Iefuji H (2008) Biochemical characterization of a glycoside hydrolase family 61 endoglucanase from Aspergillus kawachii. Appl Microbiol Biotechnol 77:1279–1285PubMedCrossRefGoogle Scholar
  29. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  30. Lipka V, Dittgen J, Bednarek P, Bhat R, Wiermer M, Stein M, Landtag J, Brandt W, Rosahl S, Scheel D, Llorente F, Molina A, Parker J, Somerville S, Schulze-Lefert P (2005) Pre- and postinvasion defenses both contribute to nonhost resistance in Arabidopsis. Science 310:1180–1183PubMedCrossRefGoogle Scholar
  31. Marcus L, Barash I, Sneh B, Koltin Y, Finkler A (1986) Purification and characterization of pectolytic enzymes produced by virulent and hypovirulent isolates of Rhizoctonia solani Kuhn. Physiol Mol Plant Pathol 29:325–336CrossRefGoogle Scholar
  32. Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho P, Cullen D, Danchin EG, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, de Leon A, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, Schoch CL, Yao J, Barbote R, Nelson MA, Detter C, Bruce D, Kuske CR, Xie G, Richardson P, Rokhsar DS, Lucas SM, Rubin EM, Dunn-Coleman N, Ward M, Brettin TS (2008) Genome sequencing and analysis of the biomass degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26:553–560PubMedCrossRefGoogle Scholar
  33. Matta A (1976) Dannosità della Pyrenochaeta lycopersici nelle colture di pomodoro in serra della riviera ligure. Colture Protette 5:31–33Google Scholar
  34. Münch S, Lingner U, Floss DS, Ludwig N, Sauer N, Deising HB (2008) The hemibiotrophic lifestyle of Colletotrichum species. J Plant Physiol 165:41–51PubMedCrossRefGoogle Scholar
  35. Nowrousian M, Stajich JE, Chu M, Engh I, Espagne E, Halliday K, Kamerewerd J, Kempken F, Knab B, Kuo HC, Osiewacz HD, Pöggeler S, Read ND, Seiler S, Smith KM, Zickler D, Kück U, Freitag (2010) De novo assembly of a 40 Mb eukaryotic genome from short sequence reads: Sordaria macrospora, a model organism for fungal morphogenesis. PLoS Genet 6(4):e1000891PubMedCrossRefGoogle Scholar
  36. O’Connell R, Herbert C, Seenivasaprasad S, Khatib M, Esquerrè-Tugayè MT, Dumas B (2004) A novel ArabidopsisColletotrichum pathosystem for the molecular dissection of plant-fungal interactions. Mol Plant Microbe Interact 17:272–282PubMedCrossRefGoogle Scholar
  37. Park J, Jin J, Lee Y, Kang S, Lee Y (2009) Rice blast fungus (Magnaporthe oryzae) infects Arabidopsis via a distinct mechanism from that required for the infection of rice. Plant Physiol 149:474–486PubMedCrossRefGoogle Scholar
  38. Rowe HC, Kliebenstein DJ (2007) Elevated genetic variation within virulence associated Botrytis cinerea polygalacturonase loci. Mol Plant Microbe Interact 20:1126–1137PubMedCrossRefGoogle Scholar
  39. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  40. Sang-Jik L, Jocelyn KCR (2010) Mediation of the transition from biotrophy to necrotrophy in hemibiotrophic plant pathogens by secreted effector proteins. Plant Signal Behav 5:769–772CrossRefGoogle Scholar
  41. Smith GE, Summers MD (1980) The bidirectional transfer of DNA and RNA to nitrocellulose or diazobenzyloxymethyl-paper. Anal Biochem 109:123–129PubMedCrossRefGoogle Scholar
  42. Stukenbrock EH, McDonald BA (2009) Population genetics of fungal and oomycte effectors involved in gene-for-gene interactions. Mol Plant Microbe Interact 22:371–380PubMedCrossRefGoogle Scholar
  43. Vaaje-Kolstad G, Horn SJ, van Aalten DM, Synstad B, Eijsink VG (2005) The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation. J Biol Chem 280:28492–28497PubMedCrossRefGoogle Scholar
  44. Wang P, Nuss DL (1995) Induction of a Cryphonectria parasitica cellobiohydrolase I gene is suppressed by hypovirus infection and regulation by a G-protein-linked signaling pathway involved in fungal pathogenesis. Proc Natl Acad Sci USA 92:11529–11533PubMedCrossRefGoogle Scholar
  45. Workneh F, van Bruggen AHC, Drinkwater LE, Shennan C (1993) Variables associated with corky root and Phytophthora root rot of tomatoes in organic and conventional farms. Phytopathology 83:581–589CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Maria Teresa Valente
    • 1
  • Alessandro Infantino
    • 1
  • Maria Aragona
    • 1
  1. 1.CRA-Centro di Ricerca per la Patologia VegetaleRomeItaly

Personalised recommendations