Current Genetics

, 57:201 | Cite as

Ergot cluster-encoded catalase is required for synthesis of chanoclavine-I in Aspergillus fumigatus

  • Kerry E. Goetz
  • Christine M. Coyle
  • Johnathan Z. Cheng
  • Sarah E. O’Connor
  • Daniel G. PanaccioneEmail author
Research Article


Genes required for ergot alkaloid biosynthesis are clustered in the genomes of several fungi. Several conserved ergot cluster genes have been hypothesized, and in some cases demonstrated, to encode early steps of the pathway shared among fungi that ultimately make different ergot alkaloid end products. The deduced amino acid sequence of one of these conserved genes (easC) indicates a catalase as the product, but a role for a catalase in the ergot alkaloid pathway has not been established. We disrupted easC of Aspergillus fumigatus by homologous recombination with a truncated copy of that gene. The resulting mutant (ΔeasC) failed to produce the ergot alkaloids typically observed in A. fumigatus, including chanoclavine-I, festuclavine, and fumigaclavines B, A, and C. The ΔeasC mutant instead accumulated N-methyl-4-dimethylallyltryptophan (N-Me-DMAT), an intermediate recently shown to accumulate in Claviceps purpurea strains mutated at ccsA (called easE in A. fumigatus) (Lorenz et al. Appl Environ Microbiol 76:1822–1830, 2010). A ΔeasE disruption mutant of A. fumigatus also failed to accumulate chanoclavine-I and downstream ergot alkaloids and, instead, accumulated N-Me-DMAT. Feeding chanoclavine-I to the ΔeasC mutant restored ergot alkaloid production. Complementation of either ΔeasC or ΔeasE mutants with the respective wild-type allele also restored ergot alkaloid production. The easC gene was expressed in Escherichia coli, and the protein product displayed in vitro catalase activity with H2O2 but did not act, in isolation, on N-Me-DMAT as substrate. The data indicate that the products of both easC (catalase) and easE (FAD-dependent oxidoreductase) are required for conversion of N-Me-DMAT to chanoclavine-I.


Ergot alkaloids Mycotoxin Clavines Catalase Gene cluster Aspergillus fumigatus 



We thank Christopher L. Schardl (University of Kentucky) for providing plasmid pKAES154 containing C. purpurea dmaW. This work was supported by grant number 2008-35318-04549 from the United States Department of Agriculture National Institute of Food and Agriculture and published with permission of the West Virginia Agriculture and Forestry Experiment Station as scientific article number 3902.


  1. Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126PubMedCrossRefGoogle Scholar
  2. Calera JA, Paris S, Monod M, Hamilton AJ, Debeaupuis JP, Diaquin M, Lopez-Medrano R, Leal F, Latge′ JP (1997) Cloning and disruption of the antigenic catalase gene of Aspergillus fumigatus. Infect Immun 65:4718–4724PubMedGoogle Scholar
  3. Cheng JZ, Coyle CM, Panaccione DG, O’Connor SE (2010a) Controlling a structural branch point in ergot alkaloid biosynthesis. J Am Chem Soc 132:12835–12837PubMedCrossRefGoogle Scholar
  4. Cheng JZ, Coyle CM, Panaccione DG, O’Connor SE (2010b) A role for old yellow enzyme in ergot alkaloid biosynthesis. J Am Chem Soc 132:1776–1777PubMedCrossRefGoogle Scholar
  5. Coyle CM, Panaccione DG (2005) An ergot alkaloid biosynthesis gene and clustered hypothetical genes from Aspergillus fumigatus. Appl Environ Microbiol 71:3112–3118PubMedCrossRefGoogle Scholar
  6. Coyle CM, Kenaley SC, Rittenour WR, Panaccione DG (2007) Association of ergot alkaloids with conidiation in Aspergillus fumigatus. Mycologia 99:804–811PubMedCrossRefGoogle Scholar
  7. Coyle CM, Cheng JZ, O’Connor SE, Panaccione DG (2010) An old yellow enzyme gene controls the branch point between Aspergillus fumigatus and Claviceps purpurea ergot alkaloid pathways. Appl Environ Microbiol 76:3898–3903PubMedCrossRefGoogle Scholar
  8. Das S, Glenn IJH, Subramanian M (2010) Enantioselective oxidation of 2-hydroxy carboxylic acids by glycolate oxidase and catalase coexpressed in methylotropic Pichia pastoris. Biotechnol Prog 26:607–615PubMedCrossRefGoogle Scholar
  9. Fleetwood DJ, Scott B, Lane GA, Tanaka A, Johnson RD (2007) A complex ergovaline gene cluster in Epichloë endophytes of grasses. Appl Environ Microbiol 73:2571–2579PubMedCrossRefGoogle Scholar
  10. Gebler J, Woodside A, Poulter C (1992) Dimethylallyltryptophan synthase. An enzyme-catalyzed electrophilic aromatic substitution. J Am Chem Soc 114:7354–7360CrossRefGoogle Scholar
  11. Geissler J, Ghisla S, Kroneck PMH (1986) Flavin-dependent alcohol oxidase from yeast. Studies on the catalytic mechanism and inactivation during turnover. Eur J Biochem 160:93–100PubMedCrossRefGoogle Scholar
  12. Haarmann T, Machado C, Lübbe Y, Correia T, Schardl CL, Panaccione DG, Tudzynski P (2005) The ergot alkaloid gene cluster in Claviceps purpurea: extension of the cluster sequence and intra species evolution. Phytochemistry 66:1312–1320PubMedCrossRefGoogle Scholar
  13. Horton P, Park K-J, Obayashi T, Fujita N, Harada H, Adams-Collier CJ, Nakai K (2007) WoLF PSORT: protein localization predictor. Nucleic Acids Res 35:W585–W587PubMedCrossRefGoogle Scholar
  14. Kozikowski AP, Chen C, Wu J-P, Shibuya M, Kim C-G, Floss HG (1993) Probing ergot alkaloid biosynthesis: intermediates in the formation of ring C. J Am Chem Soc 115:2482–2488CrossRefGoogle Scholar
  15. Lorenz N, Wilson EV, Machado C, Schardl CL, Tudzynski P (2007) Comparison of ergot alkaloid biosynthesis gene clusters in Claviceps species indicates loss of late pathway steps in evolution of C. fusiformis. Appl Environ Microbiol 73:7185–7191PubMedCrossRefGoogle Scholar
  16. Lorenz N, Haarmann T, Pažoutová S, Jung M, Tudzynski P (2009) The ergot alkaloid gene cluster: functional analyses and evolutionary aspects. Phytochemistry 70:1822–1832PubMedCrossRefGoogle Scholar
  17. Lorenz N, Olšovská J, Šulc M, Tudzynski P (2010) Alkaloid cluster gene ccsA of the ergot fungus Claviceps purpurea encodes chanoclavine I synthase, a flavin adenine dinucleotide-containing oxidoreductase mediating the transformation of N-methyl-dimethylallyltryptophan to chanoclavine I. Appl Environ Microbiol 76:1822–1830PubMedCrossRefGoogle Scholar
  18. Panaccione DG (2010) Ergot alkaloids. In: Hofrichter M (ed) The Mycota, vol. 10, Industrial applications, 2nd edn. Springer-Verlag, Berlin-Heidelburg, pp 195–214Google Scholar
  19. Panaccione DG, Coyle CM (2005) Abundant respirable ergot alkaloids from the common airborne fungus Aspergillus fumigatus. Appl Environ Microbiol 71:3106–3111PubMedCrossRefGoogle Scholar
  20. Paris S, Wysong D, Debeaupuis JP, Kazutoshi S, Philippe B, Diamond RD, Latge JP (2003) Catalases of Aspergillus fumigatus. Infect Immun 71:3551–3562PubMedCrossRefGoogle Scholar
  21. Rigbers O, Li S-M (2008) Ergot alkaloid biosynthesis in Aspergillus fumigatus: overproduction and biochemical characterization of a 4-dimethylallyltryptophan N-methyltransferase. J Biol Chem 283:26859–26868PubMedCrossRefGoogle Scholar
  22. Schardl CL, Panaccione DG, Tudzynski P (2006) Ergot alkaloids—biology and molecular biology. Alkaloids 62:45–86Google Scholar
  23. Spilsbury JF, Wlikinson S (1961) The isolation of festuclavine and two new clavine alkaloids from Aspergillus fumigatus Fres. J Chem Soc 5:2085–2091CrossRefGoogle Scholar
  24. Tudzynski P, Holter K, Correia T, Arntz C, Grammel N, Keller U (1999) Evidence for an ergot alkaloid gene cluster in Claviceps purpurea. Mol Gen Genet 261:133–141PubMedCrossRefGoogle Scholar
  25. Unsöld IA, Li S-M (2005) Overproduction, purification and characterization of FgaPT2, a dimethylallyltryptophan synthase from Aspergillus fumigatus. Microbiology 151:1499–1505PubMedCrossRefGoogle Scholar
  26. Wallwey C, Matuschek M, Li S-M (2010a) Ergot alkaloid biosynthesis in Aspergillus fumigatus: conversion of chanoclavine-I to chanoclavine-I aldehyde catalyzed by a short-chain alcohol dehydrogenase FgaDH. Arch Microbiol 192:2127–2134CrossRefGoogle Scholar
  27. Wallwey C, Matuschek M, Xie X-L, Li S-M (2010b) Ergot alkaloid biosynthesis in Aspergillus fumigatus: conversion of chanoclavine-I aldehyde to festuclavine by the festuclavine synthase FgaFS in the presence of the old yellow enzyme FgaOx3. Org Biomol Chem 8:3500–3508PubMedCrossRefGoogle Scholar
  28. Wang J, Machado C, Panaccione DG, Tsai H-F, Schardl CL (2004) The determinant step in ergot alkaloid biosynthesis by an endophyte of perennial ryegrass. Fungal Genet Biol 41:189–198PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Kerry E. Goetz
    • 1
    • 3
  • Christine M. Coyle
    • 1
  • Johnathan Z. Cheng
    • 2
  • Sarah E. O’Connor
    • 2
  • Daniel G. Panaccione
    • 1
    Email author
  1. 1.Division of Plant and Soil Sciences, Genetics and Developmental Biology ProgramWest Virginia UniversityMorgantownUSA
  2. 2.Department of ChemistryMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.National Eye Institute, National Institutes of HealthBethesdaUSA

Personalised recommendations