Current Genetics

, Volume 56, Issue 6, pp 543–557 | Cite as

Synthetic lethality of rpn11-1 rpn10Δ is linked to altered proteasome assembly and activity

Research Article

Abstract

An rpn11-1 temperature-sensitive mutant shows defect in proteolysis, mitochondrial function and proteasome assembly. The Rpn11 protein is a proteasome subunit that deubiquitinates proteolytic substrates. Multiubiquitinated proteins interact with proteasome receptors, such as Rpn10, which intriguingly is also required for promoting proteasome stability. We report here that Rpn10 binds Rpn11, and genetic studies revealed synthetic lethality of an rpn11-1 rpn10Δ double mutant. The carboxy-terminus of Rpn11 is critical for function, as deletion of 7 C-terminal residues prevented suppression of rpn11-1 rpn10Δ. Native gel electrophoresis showed increased levels of the proteasome 20S catalytic particle in rpn11-1 rpn10Δ, and altered assembly. The inviability of rpn11-1 rpn10Δ was suppressed by rpn10uim, a mutant that can bind the proteasome, but not multiubiquitin chains. rpn10uim reduced the levels of free 20S, and increased formation of intact proteasomes. In contrast, rpn10vwa, which binds multiubiquitin chains but not the proteasome, failed to suppress rpn11-1 rpn10Δ. Moreover, high levels of multiubiquitinated proteins were bound to rpn10vwa, but were not delivered to the proteasome. Based on these findings, we propose that the lethality of rpn11-1 rpn10Δ results primarily from altered proteasome integrity. It is conceivable that Rpn10/Rpn11 interaction couples proteasome assembly to substrate binding.

Keywords

Proteasome Rpn11 Rpn10 Ubiquitin Proteolysis 

Notes

Acknowledgments

We thank D. Skowyra (St. Louis University) and M. Nomura (University of California, Irvine) for providing strains, plasmids and antibodies. We thank N. Torres for generating carboxy-terminal truncations in Rpn11. V. Tournier is thanked for review of the manuscript. These studies were supported by a grant from the National Institutes of Health (CA083875) to KM.

Supplementary material

294_2010_321_MOESM1_ESM.pdf (108 kb)
Supplementary material 1 (PDF 108 kb)

References

  1. Beal RE, Toscano-Cantaffa D, Young P, Rechsteiner M, Pickart CM (1998) The hydrophobic effect contributes to polyubiquitin chain recognition. Biochemistry 37:2925–2934PubMedCrossRefGoogle Scholar
  2. Chandra A, Chen L, Liang H, Madura K (2010) Proteasome assembly influences interaction with ubiquitinated proteins and shuttle factors. J Biol Chem 285:8330–8339PubMedCrossRefGoogle Scholar
  3. Chau V, Tobias JW, Bachmair A, Marriott D, Ecker DJ, Gonda DK, Varshavsky A (1989) A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243:1576–1583PubMedCrossRefGoogle Scholar
  4. Chen L, Madura K (2002) Rad23 promotes the targeting of proteolytic substrates to the proteasome. Mol Cell Biol 22:4902–4913PubMedCrossRefGoogle Scholar
  5. Chen X, Zhang B, Fischer JA (2002) A specific protein substrate for a deubiquitinating enzyme: Liquid facets is the substrate of Fat facets. Genes Dev 16:289–294PubMedCrossRefGoogle Scholar
  6. Deveraux Q, Ustrell V, Pickart C, Rechsteiner M (1994) A 26S protease subunit that binds ubiquitin conjugates. J Biol Chem 269:7059–7061PubMedGoogle Scholar
  7. Elsasser S, Finley D (2005) Delivery of ubiquitinated substrates to protein-unfolding machines. Nat Cell Biol 7:742–749. doi: 10.1038/ncb0805-742 PubMedCrossRefGoogle Scholar
  8. Elsasser S, Gali RR, Schwickart M, Larsen CN, Leggett DS, Muller B, Feng MT, Tubing F, Dittmar GA, Finley D (2002) Proteasome subunit Rpn1 binds ubiquitin-like protein domains. Nat Cell Biol 4:725–730. doi: 10.1038/ncb845 PubMedCrossRefGoogle Scholar
  9. Elsasser S, Chandler-Militello D, Mueller B, Hanna J, Finley D (2004) Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasome. J Biol ChemGoogle Scholar
  10. Ferrell K, Wilkinson CR, Dubiel W, Gordon C (2000) Regulatory subunit interactions of the 26S proteasome, a complex problem. Trends Biochem Sci 25:83–88PubMedCrossRefGoogle Scholar
  11. Fu H, Sadis S, Rubin DM, Glickman M, van Nocker S, Finley D, Vierstra RD (1998) Multiubiquitin chain binding and protein degradation are mediated by distinct domains within the 26 S proteasome subunit Mcb1. J Biol Chem 273:1970–1981PubMedCrossRefGoogle Scholar
  12. Fu H, Reis N, Lee Y, Glickman MH, Vierstra RD (2001) Subunit interaction maps for the regulatory particle of the 26S proteasome and the COP9 signalosome. Embo J 20:7096–7107PubMedCrossRefGoogle Scholar
  13. Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428PubMedGoogle Scholar
  14. Glickman MH, Rubin DM, Coux O, Wefes I, Pfeifer G, Cjeka Z, Baumeister W, Fried VA, Finley D (1998a) A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94:615–623. doi: S0092-8674(00)81603-7 PubMedCrossRefGoogle Scholar
  15. Glickman MH, Rubin DM, Fried VA, Finley D (1998b) The regulatory particle of the Saccharomyces cerevisiae proteasome. Mol Cell Biol 18:3149–3162PubMedGoogle Scholar
  16. Guterman A, Glickman MH (2004) Complementary roles for Rpn11 and Ubp6 in deubiquitination and proteolysis by the proteasome. J Biol Chem 279:1729–1738. doi: 10.1074/jbc.M307050200 PubMedCrossRefGoogle Scholar
  17. Hanna J, Hathaway NA, Tone Y, Crosas B, Elsasser S, Kirkpatrick DS, Leggett DS, Gygi SP, King RW, Finley D (2006) Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation. Cell 127:99–111. doi: 10.1016/j.cell.2006.07.038 PubMedCrossRefGoogle Scholar
  18. Hendil KB, Kriegenburg F, Tanaka K, Murata S, Lauridsen AM, Johnsen AH, Hartmann-Petersen R (2009) The 20S proteasome as an assembly platform for the 19S regulatory complex. J Mol Biol 394:320–328PubMedCrossRefGoogle Scholar
  19. Hofmann K, Falquet L (2001) A ubiquitin-interacting motif conserved in components of the proteasomal and lysosomal protein degradation systems. Trends Biochem Sci 26:347–350Google Scholar
  20. Husnjak K, Elsasser S, Zhang N, Chen X, Randles L, Shi Y, Hofmann K, Walters KJ, Finley D, Dikic I (2008) Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453:481–488. doi: 10.1038/nature06926 PubMedCrossRefGoogle Scholar
  21. Isasa M, Katz EJ, Kim W, Yugo V, Gonzalez S, Kirkpatrick DS, Thomson TM, Finley D, Gygi SP, Crosas B (2010) Monoubiquitination of RPN10 regulates substrate recruitment to the proteasome. Mol Cell 38:733–745PubMedCrossRefGoogle Scholar
  22. Isono E, Nishihara K, Saeki Y, Yashiroda H, Kamata N, Ge L, Ueda T, Kikuchi Y, Tanaka K, Nakano A, Toh-e A (2007) The assembly pathway of the 19S regulatory particle of the yeast 26S proteasome. Mol Biol Cell 18:569–580. doi: 10.1091/mbc.E06-07-0635 PubMedCrossRefGoogle Scholar
  23. Kim I, Mi K, Rao H (2004) Multiple interactions of rad23 suggest a mechanism for ubiquitylated substrate delivery important in proteolysis. Mol Biol Cell 15:3357–3365PubMedCrossRefGoogle Scholar
  24. Koegl M, Hoppe T, Schlenker S, Ulrich HD, Mayer TU, Jentsch S (1999) A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96:635–644PubMedCrossRefGoogle Scholar
  25. Koulich E, Li X, DeMartino GN (2008) Relative structural and functional roles of multiple deubiquitylating proteins associated with mammalian 26S proteasome. Mol Biol Cell 19:1072–1082PubMedCrossRefGoogle Scholar
  26. Lam YA, Lawson TG, Velayutham M, Zweier JL, Pickart CM (2002) A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature 416:763–767PubMedCrossRefGoogle Scholar
  27. Lambertson D, Chen L, Madura K (1999) Pleiotropic defects caused by loss of the proteasome-interacting factors Rad23 and Rpn10 of Saccharomyces cerevisiae. Genetics 153:69–79PubMedGoogle Scholar
  28. Madura K, Prakash S (1990) Transcript levels of the Saccharomyces cerevisiae DNA repair gene RAD23 increases in response to UV light and in meiosis but remain constant in the mitotic cell cycle. Nucleic Acids Res 18:4737–4742PubMedCrossRefGoogle Scholar
  29. Pickart CM (1997) Targeting of substrates to the 26S proteasome. FASEB J 11:1055–1066PubMedGoogle Scholar
  30. Pickart CM, Cohen RE (2004) Proteasomes and their kin: proteases in the machine age. Nat Rev Mol Cell Biol 5:177–187PubMedCrossRefGoogle Scholar
  31. Rinaldi T, Ricci C, Porro D, Bolotin-Fukuhara M, Frontali L (1998) A mutation in a novel yeast proteasomal gene, RPN11/MPR1, produces a cell cycle arrest, overreplication of nuclear and mitochondrial DNA, and an altered mitochondrial morphology. Mol Biol Cell 9:2917–2931PubMedGoogle Scholar
  32. Rinaldi T, Ricordy R, Bolotin-Fukuhara M, Frontali L (2002) Mitochondrial effects of the pleiotropic proteasomal mutation mpr1/rpn11: uncoupling from cell cycle defects in extragenic revertants. Gene 286:43–51. doi: S0378111901007995 PubMedCrossRefGoogle Scholar
  33. Rinaldi T, Pick E, Gambadoro A, Zilli S, Maytal-Kivity V, Frontali L, Glickman MH (2004) Participation of the proteasomal lid subunit Rpn11 in mitochondrial morphology and function is mapped to a distinct C-terminal domain. Biochem J 381:275–285. doi: 10.1042/BJ20040008 PubMedCrossRefGoogle Scholar
  34. Rinaldi T, Hofmann L, Gambadoro A, Cossard R, Livnat-Levanon N, Glickman MH, Frontali L, Delahodde A (2008) Dissection of the carboxyl-terminal domain of the proteasomal subunit Rpn11 in maintenance of mitochondrial structure and function. Mol Biol Cell 19:1022–1031. doi: 10.1091/mbc.E07-07-0717 PubMedCrossRefGoogle Scholar
  35. Rubin DM, Glickman MH, Larsen CN, Dhruvakumar S, Finley D (1998) Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasome. EMBO J 17:4909–4919. doi: 10.1093/emboj/17.17.4909 PubMedCrossRefGoogle Scholar
  36. Schreiner P, Chen X, Husnjak K, Randles L, Zhang N, Elsasser S, Finley D, Dikic I, Walters KJ, Groll M (2008) Ubiquitin docking at the proteasome through a novel pleckstrin-homology domain interaction. Nature 453:548–552. doi: 10.1038/nature06924 PubMedCrossRefGoogle Scholar
  37. Thrower JS, Hoffman L, Rechsteiner M, Pickart CM (2000) Recognition of the polyubiquitin proteolytic signal. EMBO J 19:94–102PubMedCrossRefGoogle Scholar
  38. van Nocker S, Sadis S, Rubin DM, Glickman M, Fu H, Coux O, Wefes I, Finley D, Vierstra RD (1996) The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover. Mol Cell Biol 16:6020–6028PubMedGoogle Scholar
  39. Verma R, Aravind L, Oania R, McDonald WH, Yates JR 3rd, Koonin EV, Deshaies RJ (2002) Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298:611–615. doi: 10.1126/science.1075898 PubMedCrossRefGoogle Scholar
  40. Verma R, Oania R, Graumann J, Deshaies RJ (2004) Multiubiquitin chain receptors define a layer of substrate selectivity in the ubiquitin-proteasome system. Cell 118:99–110PubMedCrossRefGoogle Scholar
  41. Wilkinson CR, Ferrell K, Penney M, Wallace M, Dubiel W, Gordon C (2000) Analysis of a gene encoding Rpn10 of the fission yeast proteasome reveals that the polyubiquitin-binding site of this subunit is essential when Rpn12/Mts3 activity is compromised. J Biol Chem 275:15182–15192PubMedCrossRefGoogle Scholar
  42. Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y, Robert J, Rush J, Hochstrasser M, Finley D, Peng J (2009) Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137:133–145PubMedCrossRefGoogle Scholar
  43. Yao T, Cohen RE (2002) A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 419:403–407PubMedCrossRefGoogle Scholar
  44. Zhang F, Wu Z, Zhang P, Tian G, Finley D, Shi Y (2009) Mechanism of substrate unfolding and translocation by the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol Cell 34:485–496. doi: 10.1016/j.molcel.2009.04.022 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of BiochemistryRobert Wood Johnson Medical SchoolPiscatawayUSA

Personalised recommendations