Advertisement

Current Genetics

, Volume 56, Issue 3, pp 225–235 | Cite as

Deletion of PaAif2 and PaAmid2, two genes encoding mitochondrial AIF-like oxidoreductases of Podospora anserina, leads to increased stress tolerance and lifespan extension

  • Diana Brust
  • Andrea Hamann
  • Heinz D. OsiewaczEmail author
Research Article

Abstract

Wild-type strains of the ascomycete Podospora anserina are characterized by a limited lifespan. Mitochondria play a central role in this ageing process raising the question of whether apoptosis-like processes, which are also connected to mitochondrial function, are involved in the control of the final stage in the fungal life cycle. While a role of two metacaspases in apoptosis and lifespan control was recently demonstrated in P. anserina, virtually nothing is known about the function of the protein family of apoptosis-inducing factors (AIFs). Here we report data about proteins belonging to this family. We demonstrate that the cytosolic members PaAIF1 and PaAMID1 do not affect lifespan. In contrast, loss of PaAIF2 and PaAMID2, which both were localized to mitochondria, are characterized by a significantly increased ROS tolerance and a prolonged lifespan. In addition, deletion of PaAmid2 severely affects sporogenesis. These data identify components of a caspase-independent molecular pathway to be involved in developmental processes and in the induction of programmed cell death in the senescent stage of P. anserina.

Keywords

Podospora anserina AIF Mitochondria Ageing Programmed cell death 

Notes

Acknowledgments

The research was supported by grants of the Deutsche Forschungsgemeinschaft (Os75/12–1), and by the European Commission via the Integrated Project with the acronym MiMage (LSHM-CT-2004-512020). Furthermore, we thank Prof. R. Lill (Philipps University Marburg, Germany) for providing the antibody against cytochrome c.

Supplementary material

294_2010_295_MOESM1_ESM.pdf (143 kb)
Supplementary material 1 (PDF 143 kb)

References

  1. Apweiler R, Attwood TK, Bairoch A, Bateman A, Birney E, Biswas M, Bucher P, Cerutti L, Corpet F, Croning MD, Durbin R, Falquet L, Fleischmann W, Gouzy J, Hermjakob H, Hulo N, Jonassen I, Kahn D, Kanapin A, Karavidopoulou Y, Lopez R, Marx B, Mulder NJ, Oinn TM, Pagni M, Servant F, Sigrist CJ, Zdobnov EM (2000) The InterPro database, an integrated documentation resource for protein families, domains and functional sites. Bioinformatics 16:1145–1150CrossRefPubMedGoogle Scholar
  2. Argyrou A, Blanchard JS (2004) Flavoprotein disulfide reductases: advances in chemistry and function. Prog Nucleic Acid Res Mol Biol 78:89–142CrossRefPubMedGoogle Scholar
  3. Baniulis D, Yamashita E, Zhang H, Hasan SS, Cramer WA (2008) Structure-function of the cytochrome b6f complex. Photochem Photobiol 84:1349–1358CrossRefPubMedGoogle Scholar
  4. Borghouts C, Osiewacz HD (1998) GRISEA, a copper-modulated transcription factor from Podospora anserina involved in senescence and morphogenesis, is an ortholog of MAC1 in Saccharomyces cerevisiae. Mol Gen Genet 260:492–502CrossRefPubMedGoogle Scholar
  5. Borghouts C, Werner A, Elthon T, Osiewacz HD (2001) Copper-modulated gene expression and senescence in the filamentous fungus Podospora anserina. Mol Cell Biol 21:390–399CrossRefPubMedGoogle Scholar
  6. Cano-Dominguez N, Alvarez-Delfin K, Hansberg W, Aguirre J (2008) NADPH oxidases NOX-1 and NOX-2 require the regulatory subunit NOR-1 to control cell differentiation and growth in Neurospora crassa. Eukaryot Cell 7:1352–1361CrossRefPubMedGoogle Scholar
  7. Castro A, Lemos C, Falcao A, Glass NL, Videira A (2008) Increased resistance of complex I mutants to phytosphingosine-induced programmed cell death. J Biol Chem 283:19314–19321CrossRefPubMedGoogle Scholar
  8. Chaveroche MK, Ghigo JM, d’Enfert C (2000) A rapid method for efficient gene replacement in the filamentous fungus Aspergillus nidulans. Nucleic Acids Res 28:E97CrossRefPubMedGoogle Scholar
  9. Claros MG, Vincens P (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 241:779–786CrossRefPubMedGoogle Scholar
  10. Cocheme HM, Murphy MP (2008) Complex I is the major site of mitochondrial superoxide production by paraquat. J Biol Chem 283:1786–1798CrossRefPubMedGoogle Scholar
  11. Dufour E, Boulay J, Rincheval V, Sainsard-Chanet A (2000) A causal link between respiration and senescence in Podospora anserina. Proc Natl Acad Sci USA 97:4138–4143CrossRefPubMedGoogle Scholar
  12. Esser K (1974) Podospora anserina. In: King RC (ed) Handbook of genetics. Plenum Press, New York, pp 531–551Google Scholar
  13. Fadeel B, Orrenius S (2005) Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease. J Intern Med 258:479–517CrossRefPubMedGoogle Scholar
  14. Galluzzi L, Joza N, Tasdemir E, Maiuri MC, Hengartner M, Abrams JM, Tavernarakis N, Penninger J, Madeo F, Kroemer G (2008) No death without life: vital functions of apoptotic effectors. Cell Death Differ 15:1113–1123CrossRefPubMedGoogle Scholar
  15. Gredilla R, Grief J, Osiewacz HD (2006) Mitochondrial free radical generation and lifespan control in the fungal aging model Podospora anserina. Exp Gerontol 41:439–447CrossRefPubMedGoogle Scholar
  16. Hamann A, Krause K, Werner A, Osiewacz HD (2005) A two-step protocol for efficient deletion of genes in the filamentous ascomycete Podospora anserina. Curr Genet 48:270–275CrossRefPubMedGoogle Scholar
  17. Hamann A, Brust D, Osiewacz HD (2007) Deletion of putative apoptosis factors leads to lifespan extension in the fungal ageing model Podospora anserina. Mol Microbiol 65:948–958CrossRefPubMedGoogle Scholar
  18. Hamann A, Brust D, Osiewacz HD (2008) Apoptosis pathways in fungal growth, development and ageing. Trends Microbiol 16:276–283CrossRefPubMedGoogle Scholar
  19. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300PubMedGoogle Scholar
  20. Harman D (1972) The biologic clock: the mitochondria? J Am Geriatr Soc 20:145–147PubMedGoogle Scholar
  21. Herker E, Jungwirth H, Lehmann KA, Maldener C, Fröhlich KU, Wissing S, Büttner S, Fehr M, Sigrist S, Madeo F (2004) Chronological aging leads to apoptosis in yeast. J Cell Biol 164:501–507CrossRefPubMedGoogle Scholar
  22. Joza N, Pospisilik JA, Hangen E, Hanada T, Modjtahedi N, Penninger JM, Kroemer G (2009) AIF: not just an apoptosis-inducing factor. Ann N Y Acad Sci 1171:2–11CrossRefPubMedGoogle Scholar
  23. Jung C, Higgins CM, Xu Z (2000) Measuring the quantity and activity of mitochondrial electron transport chain complexes in tissues of central nervous system using blue native polyacrylamide gel electrophoresis. Anal Biochem 286:214–223CrossRefPubMedGoogle Scholar
  24. Kück U, Osiewacz HD, Schmidt U, Kappelhoff B, Schulte E, Stahl U, Esser K (1985) The onset of senescence is affected by DNA rearrangements of a discontinuous mitochondrial gene in Podospora anserina. Curr Genet 9:373–382CrossRefPubMedGoogle Scholar
  25. Kunstmann B, Osiewacz HD (2008) Over-expression of an S-adenosylmethionine-dependent methyltransferase leads to an extended lifespan of Podospora anserina without impairments in vital functions. Aging Cell 7:651–662CrossRefPubMedGoogle Scholar
  26. Lara-Ortiz T, Riveros-Rosas H, Aguirre J (2003) Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans. Mol Microbiol 50:1241–1255CrossRefPubMedGoogle Scholar
  27. Laun P, Pichova A, Madeo F, Fuchs J, Ellinger A, Kohlwein S, Dawes I, Fröhlich KU, Breitenbach M (2001) Aged mother cells of Saccharomyces cerevisiae show markers of oxidative stress and apoptosis. Mol Microbiol 39:1166–1173CrossRefPubMedGoogle Scholar
  28. Lecellier G, Silar P (1994) Rapid methods for nucleic acids extraction from Petri dish-grown mycelia. Curr Genet 25:122–123CrossRefPubMedGoogle Scholar
  29. Lorin S, Dufour E, Boulay J, Begel O, Marsy S, Sainsard-Chanet A (2001) Overexpression of the alternative oxidase restores senescence and fertility in a long-lived respiration-deficient mutant of Podospora anserina. Mol Microbiol 42:1259–1267CrossRefPubMedGoogle Scholar
  30. Lorin S, Dufour E, Sainsard-Chanet A (2006) Mitochondrial metabolism and aging in the filamentous fungus Podospora anserina. Biochim Biophys Acta 1757:604–610CrossRefPubMedGoogle Scholar
  31. Luce K, Osiewacz HD (2009) Increasing organismal healthspan by enhancing mitochondrial protein quality control. Nat Cell Biol 11:852–858CrossRefPubMedGoogle Scholar
  32. Malagnac F, Lalucque H, Lepere G, Silar P (2004) Two NADPH oxidase isoforms are required for sexual reproduction and ascospore germination in the filamentous fungus Podospora anserina. Fungal Genet Biol 41:982–997CrossRefPubMedGoogle Scholar
  33. Marzetti E, Wohlgemuth SE, Lees HA, Chung HY, Giovannini S, Leeuwenburgh C (2008) Age-related activation of mitochondrial caspase-independent apoptotic signaling in rat gastrocnemius muscle. Mech Ageing Dev 129:542–549CrossRefPubMedGoogle Scholar
  34. Modjtahedi N, Giordanetto F, Madeo F, Kroemer G (2006) Apoptosis-inducing factor: vital and lethal. Trends Cell Biol 16:264–272CrossRefPubMedGoogle Scholar
  35. Nijtmans LG, Henderson NS, Holt IJ (2002) Blue Native electrophoresis to study mitochondrial and other protein complexes. Methods 26:327–334CrossRefPubMedGoogle Scholar
  36. Ohiro Y, Garkavtsev I, Kobayashi S, Sreekumar KR, Nantz R, Higashikubo BT, Duffy SL, Higashikubo R, Usheva A, Gius D, Kley N, Horikoshi N (2002) A novel p53-inducible apoptogenic gene, PRG3, encodes a homologue of the apoptosis-inducing factor (AIF). FEBS Lett 524:163–171CrossRefPubMedGoogle Scholar
  37. Osiewacz HD (1994) A versatile shuttle cosmid vector for the efficient construction of genomic libraries and for the cloning of fungal genes. Curr Genet 26:87–90CrossRefPubMedGoogle Scholar
  38. Osiewacz HD (2002) Genes, mitochondria and aging in filamentous fungi. Ageing Res Rev 1:425–442CrossRefPubMedGoogle Scholar
  39. Osiewacz HD, Esser K (1984) The mitochondrial plasmid of Podospora anserina: a mobile intron of a mitochondrial gene. Curr Genet 8:299–305CrossRefGoogle Scholar
  40. Osiewacz HD, Kimpel E (1999) Mitochondrial–nuclear interactions and lifespan control in fungi. Exp Gerontol 34:901–909CrossRefPubMedGoogle Scholar
  41. Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12:913–922CrossRefPubMedGoogle Scholar
  42. Ozben T (2007) Oxidative stress and apoptosis: impact on cancer therapy. J Pharm Sci 96:2181–2196CrossRefPubMedGoogle Scholar
  43. Pöggeler S, Masloff S, Hoff B, Mayrhofer S, Kück U (2003) Versatile EGFP reporter plasmids for cellular localization of recombinant gene products in filamentous fungi. Curr Genet 43:54–61PubMedGoogle Scholar
  44. Riddell RW (1950) Permanent stained mycological preparations obtained by slide culture. Mycologia 42:265–270CrossRefGoogle Scholar
  45. Rizet G (1953) Sur l’impossibilité d’obtenir la multiplication ininterrompue et illimité de l’ascomycete Podospora anserina. C R Acad Sci Paris 237:838–855PubMedGoogle Scholar
  46. Rockenfeller P, Madeo F (2008) Apoptotic death of ageing yeast. Exp Gerontol 43:876–881CrossRefPubMedGoogle Scholar
  47. Savoldi M, Malavazi I, Soriani FM, Capellaro JL, Kitamoto K, da Silva Ferreira ME, Goldman MH, Goldman GH (2008) Farnesol induces the transcriptional accumulation of the Aspergillus nidulans apoptosis-inducing factor (AIF)-like mitochondrial oxidoreductase. Mol Microbiol 70:44–59CrossRefPubMedGoogle Scholar
  48. Schägger H, Pfeiffer K (2000) Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J 19:1777–1783CrossRefPubMedGoogle Scholar
  49. Scheckhuber CQ, Erjavec N, Tinazli A, Hamann A, Nyström T, Osiewacz HD (2007) Reducing mitochondrial fission results in increased life span and fitness of two fungal ageing models. Nat Cell Biol 9:99–105CrossRefPubMedGoogle Scholar
  50. Scheckhuber CQ, Mitterbauer R, Osiewacz HD (2009) Molecular basis of and interference into degenerative processes in fungi: potential relevance for improving biotechnological performance of microorganisms. Appl Microbiol Biotechnol 85:27–35CrossRefPubMedGoogle Scholar
  51. Schulte E, Kück U, Esser K (1988) Extrachromosomal mutants from Podospora anserina: permanent vegetative growth in spite of multiple recombination events in the mitochondrial genome. Mol Gen Genet 211:243–349CrossRefGoogle Scholar
  52. Stahl U, Lemke PA, Tudzynski P, Kück U, Esser K (1978) Evidence for plasmid like DNA in a filamentous fungus, the ascomycete Podospora anserina. Mol Gen Genet 162:341–343CrossRefPubMedGoogle Scholar
  53. Stumpferl SW, Stephan O, Osiewacz HD (2004) Impact of a disruption of a pathway delivering copper to mitochondria on Podospora anserina metabolism and life span. Eukaryot Cell 3:200–211CrossRefPubMedGoogle Scholar
  54. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446CrossRefPubMedGoogle Scholar
  55. Vahsen N, Cande C, Briere JJ, Benit P, Joza N, Larochette N, Mastroberardino PG, Pequignot MO, Casares N, Lazar V, Feraud O, Debili N, Wissing S, Engelhardt S, Madeo F, Piacentini M, Penninger JM, Schägger H, Rustin P, Kroemer G (2004) AIF deficiency compromises oxidative phosphorylation. EMBO J 23:4679–4689CrossRefPubMedGoogle Scholar
  56. Varecha M, Amrichova J, Zimmermann M, Ulman V, Lukasova E, Kozubek M (2007) Bioinformatic and image analyses of the cellular localization of the apoptotic proteins endonuclease G, AIF, and AMID during apoptosis in human cells. Apoptosis 12:1155–1171CrossRefPubMedGoogle Scholar
  57. Wissing S, Ludovico P, Herker E, Büttner S, Engelhardt SM, Decker T, Link A, Proksch A, Rodrigues F, Corte-Real M, Fröhlich KU, Manns J, Candé C, Sigrist SJ, Kroemer G, Madeo F (2004) An AIF orthologue regulates apoptosis in yeast. J Cell Biol 166:969–974CrossRefPubMedGoogle Scholar
  58. Wu M, Xu LG, Li X, Zhai Z, Shu HB (2002) AMID, an apoptosis-inducing factor-homologous mitochondrion-associated protein, induces caspase-independent apoptosis. J Biol Chem 277:25617–25623CrossRefPubMedGoogle Scholar
  59. Xie Q, Lin T, Zhang Y, Zheng J, Bonanno JA (2005) Molecular cloning and characterization of a human AIF-like gene with ability to induce apoptosis. J Biol Chem 280:19673–19681CrossRefPubMedGoogle Scholar
  60. Yu W, Gubkina O, Mechawar N, Elwell D, Quirion R, Krantic S (2009) Expression of apoptosis-inducing factor (AIF) in the aged rat brain. Neurobiol Aging. doi: 10.1016/j.neurobiolaging.2009.01.010
  61. Zintel S, Schwitalla D, Luce K, Hamann A, Osiewacz HD (2010) Increasing mitochondrial superoxide dismutase abundance leads to impairments in protein quality control and ROS scavenging systems and to lifespan shortening. Exp Gerontol. doi: 10.1016/j.exger.2010.01.006
  62. Zörnig M, Hueber A, Baum W, Evan G (2001) Apoptosis regulators and their role in tumorigenesis. Biochim Biophys Acta 1551:F1–F37PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Diana Brust
    • 1
  • Andrea Hamann
    • 1
  • Heinz D. Osiewacz
    • 1
    Email author
  1. 1.Cluster of Excellence Macromolecular Complexes, Faculty for Biosciences, Institute of Molecular BiosciencesJohann Wolfgang Goethe UniversityFrankfurtGermany

Personalised recommendations