Current Genetics

, Volume 55, Issue 5, pp 497–509 | Cite as

Biology and genetics of the pathogenic yeast Candida parapsilosis

  • Jozef Nosek
  • Zuzana Holesova
  • Peter Kosa
  • Attila Gacser
  • Lubomir Tomaska
Review

Abstract

The yeast Candida parapsilosis is an opportunistic human pathogen frequently associated with nosocomial infections in neonates and patients with diminished immunity. A growing number of studies powered by recent advances in molecular genetics and genomics provide a background for uncovering the molecular basis of its virulence that suggests promising avenues for therapeutic intervention against this pathogen. Importantly, these studies also revealed several unique genetic and physiological features absent in model organisms, such as baker’s and fission yeasts. Hence, besides the clinical impact, C. parapsilosis represents an interesting non-conventional model suitable for investigations of several fundamental biological phenomena in cellular physiology, morphogenesis, and genome maintenance. In this study, we provide a concise review on C. parapsilosis biology and highlight its interesting biological features. In addition, we summarize approaches for genetic manipulation, which have enhanced research on this species by overcoming limitations of conventional genetic analysis caused primarily by an apparent absence of a sexual cycle and the diploid state of its genome.

Keywords

Candida parapsilosis Pathogenic yeast Linear mitochondrial genome Bioenergetics Morphogenesis Genetic manipulation 

References

  1. Ashford B (1928) Certain conditions of the gastro-intestinal tract in Porto Rico and their relation to tropical sprue. Am J Trop Med 8:507–538Google Scholar
  2. Barchiesi F, Caggiano G, Falconi Di Francesco L, Montagna MT, Barbuti S, Scalise G (2004) Outbreak of fungemia due to Candida parapsilosis in a pediatric oncology unit. Diagn Microbiol Infect Dis 49:269–271PubMedCrossRefGoogle Scholar
  3. Branchini ML, Pfaller MA, Rhine-Chalberg J, Frempong T, Isenberg HD (1994) Genotypic variation and slime production among blood and catheter isolates of Candida parapsilosis. J Clin Microbiol 32:452–456PubMedGoogle Scholar
  4. Brillowska-Dabrowska A et al (2009) A nosocomial outbreak of Candida parapsilosis in southern Sweden verified by genotyping. Scand J Infect Dis 41:135–142PubMedCrossRefGoogle Scholar
  5. Brunel L et al (2004) High-level expression of Candida parapsilosis lipase/acyltransferase in Pichia pastoris. J Biotechnol 111:41–50PubMedCrossRefGoogle Scholar
  6. Butler G et al (2009) Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459:657–662PubMedCrossRefGoogle Scholar
  7. Camougrand N, Velours G, Guerin M (1986) Resistance of Candida parapsilosis to drugs. Biol Cell 58:71–78PubMedGoogle Scholar
  8. Camougrand N, Velours G, Guerin M (1991) Biochemical studies carried out on different groups of Candida parapsilosis and Candida rhagii strains by comparing some cellular and mitochondrial activities. Antonie van Leeuwenhoek 59:235–241PubMedCrossRefGoogle Scholar
  9. Camougrand N, Velours J, Denis M, Guerin M (1993) Isolation, characterization and function of the two cytochromes c of the yeast Candida parapsilosis. Biochim Biophys Acta 1143:135–141PubMedCrossRefGoogle Scholar
  10. Carruba G, Pontieri E, De Bernardis F, Martino P, Cassone A (1991) DNA fingerprinting and electrophoretic karyotype of environmental and clinical isolates of Candida parapsilosis. J Clin Microbiol 29:916–922PubMedGoogle Scholar
  11. Cassone A et al (1995) Biotype diversity of Candida parapsilosis and its relationship to the clinical source and experimental pathogenicity. J Infect Dis 171:967–975PubMedGoogle Scholar
  12. Cesare AJ, Griffith JD (2004) Telomeric DNA in ALT cells is characterized by free telomeric circles and heterogeneous t-loops. Mol Cell Biol 24:9948–9957PubMedCrossRefGoogle Scholar
  13. Chaffin WL (2008) Candida albicans cell wall proteins. Microbiol Mol Biol Rev 72:495–544PubMedCrossRefGoogle Scholar
  14. Chamilos G, Lewis RE, Kontoyiannis DP (2006) Inhibition of Candida parapsilosis mitochondrial respiratory pathways enhances susceptibility to caspofungin. Antimicrob Agents Chemother 50:744–747PubMedCrossRefGoogle Scholar
  15. Clark TA et al (2004) Epidemiologic and molecular characterization of an outbreak of Candida parapsilosis bloodstream infections in a community hospital. J Clin Microbiol 42:4468–4472PubMedCrossRefGoogle Scholar
  16. De Bernardis F, Mondello F, San Millan R, Ponton J, Cassone A (1999) Biotyping and virulence properties of skin isolates of Candida parapsilosis. J Clin Microbiol 37:3481–3486PubMedGoogle Scholar
  17. DiazGranados CA, Martinez A, Deaza C, Valderrama S (2008) An outbreak of Candida spp. bloodstream infection in a tertiary care center in Bogota, Colombia. Braz J Infect Dis 12:390–394PubMedCrossRefGoogle Scholar
  18. Diezmann S, Cox CJ, Schonian G, Vilgalys RJ, Mitchell TG (2004) Phylogeny and evolution of medical species of Candida and related taxa: a multigenic analysis. J Clin Microbiol 42:5624–5635PubMedCrossRefGoogle Scholar
  19. Ding C, Butler G (2007) Development of a gene knockout system in Candida parapsilosis reveals a conserved role for BCR1 in biofilm formation. Eukaryot Cell 6:1310–1319PubMedCrossRefGoogle Scholar
  20. Dizbay M et al (2008) Molecular investigation of a fungemia outbreak due to Candida parapsilosis in an intensive care unit. Braz J Infect Dis 12:395–399PubMedCrossRefGoogle Scholar
  21. Doi M, Homma M, Chindamporn A, Tanaka K (1992) Estimation of chromosome number and size by pulsed-field gel electrophoresis (PFGE) in medically important Candida species. J Gen Microbiol 138:2243–2251PubMedGoogle Scholar
  22. Douglas LJ (2003) Candida biofilms and their role in infection. Trends Microbiol 11:30–36PubMedCrossRefGoogle Scholar
  23. Dvorak JA, Whelan WL, McDaniel JP, Gibson CC, Kwon-Chung KJ (1987) Flow cytometric analysis of the DNA synthetic cycle of Candida species. Infect Immun 55:1490–1497PubMedGoogle Scholar
  24. Eppink MH, Boeren SA, Vervoort J, van Berkel WJ (1997) Purification and properties of 4-hydroxybenzoate 1-hydroxylase (decarboxylating), a novel flavin adenine dinucleotide-dependent monooxygenase from Candida parapsilosis CBS604. J Bacteriol 179:6680–6687PubMedGoogle Scholar
  25. Eppink MH, Cammaart E, Van Wassenaar D, Middelhoven WJ, van Berkel WJ (2000) Purification and properties of hydroquinone hydroxylase, a FAD-dependent monooxygenase involved in the catabolism of 4-hydroxybenzoate in Candida parapsilosis CBS604. Eur J Biochem 267:6832–6840PubMedCrossRefGoogle Scholar
  26. Fink GR (1988) Notes of a bigamous biologist. Genetics 118:549–550PubMedGoogle Scholar
  27. Fitzpatrick DA, Logue ME, Stajich JE, Butler G (2006) A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evol Biol 6:99PubMedCrossRefGoogle Scholar
  28. Fitzpatrick DA, Logue ME, Butler G (2008) Evidence of recent interkingdom horizontal gene transfer between bacteria and Candida parapsilosis. BMC Evol Biol 8:181PubMedCrossRefGoogle Scholar
  29. Fundyga RE, Kuykendall RJ, Lee-Yang W, Lott TJ (2004) Evidence for aneuploidy and recombination in the human commensal yeast Candida parapsilosis. Infect Genet Evol 4:37–43PubMedCrossRefGoogle Scholar
  30. Gacser A, Salomon S, Schafer W (2005) Direct transformation of a clinical isolate of Candida parapsilosis using a dominant selection marker. FEMS Microbiol Lett 245:117–121PubMedCrossRefGoogle Scholar
  31. Gacser A, Trofa D, Schafer W, Nosanchuk JD (2007) Targeted gene deletion in Candida parapsilosis demonstrates the role of secreted lipase in virulence. J Clin Invest 117:3049–3058PubMedCrossRefGoogle Scholar
  32. Gadanho M, Sampaio JP (2005) Occurrence and diversity of yeasts in the mid-Atlantic ridge hydrothermal fields near the Azores Archipelago. Microb Ecol 50:408–417PubMedCrossRefGoogle Scholar
  33. Gancedo JM (2001) Control of pseudohyphae formation in Saccharomyces cerevisiae. FEMS Microbiol Rev 25:107–123PubMedCrossRefGoogle Scholar
  34. Garcia San Miguel L et al (2004) Morphotypic and genotypic characterization of sequential Candida parapsilosis isolates from an outbreak in a pediatric intensive care unit. Diagn Microbiol Infect Dis 49:189–196PubMedCrossRefGoogle Scholar
  35. Gomes AC et al (2007) A genetic code alteration generates a proteome of high diversity in the human pathogen Candida albicans. Genome Biol 8:R206PubMedCrossRefGoogle Scholar
  36. Griffith JD et al (1999) Mammalian telomeres end in a large duplex loop. Cell 97:503–514PubMedCrossRefGoogle Scholar
  37. Guerin M et al (1989) The second respiratory chain of Candida parapsilosis: a comprehensive study. Biochimie 71:887–902PubMedCrossRefGoogle Scholar
  38. Gunisova S et al (2009) Identification and comparative analysis of telomerase RNAs from Candida species reveal conservation of functional elements. RNA 15:546–559PubMedCrossRefGoogle Scholar
  39. Hamajima K, Nishikawa A, Shinoda T, Fukazawa Y (1987) Deoxyribonucleic acid base composition and it homology between two forms of Candida parapsilosis and Lodderomyces elongisporus. J Gen Appl Microbiol 33:299–302CrossRefGoogle Scholar
  40. Hruskova-Heidingsfeldova O, Dostal J, Majer F, Havlikova J, Hradilek M, Pichova I (2009) Two aspartic proteinases secreted by the pathogenic yeast Candida parapsilosis differ in expression pattern and catalytic properties. Biol Chem 390:259–268PubMedCrossRefGoogle Scholar
  41. Hull CM, Raisner RM, Johnson AD (2000) Evidence for mating of the “asexual” yeast Candida albicans in a mammalian host. Science 289:307–310PubMedCrossRefGoogle Scholar
  42. Iida S et al (2005) Genetic diversity of the internal transcribed spacers (ITS) and 5.8S rRNA genes among the clinical isolates of Candida parapsilosis in Brazil and Japan. Nippon Ishinkin Gakkai Zasshi 46:133–137PubMedCrossRefGoogle Scholar
  43. James SA, Collins MD, Roberts IN (1994) The genetic relationship of Lodderomyces elongisporus to other ascomycete yeast species as revealed by small-subunit rRNA gene sequences. Lett Appl Microbiol 19:308–311PubMedCrossRefGoogle Scholar
  44. Jarmuszkiewicz W, Milani G, Fortes F, Schreiber AZ, Sluse FE, Vercesi AE (2000) First evidence and characterization of an uncoupling protein in fungi kingdom: CpUCP of Candida parapsilosis. FEBS Lett 467:145–149PubMedCrossRefGoogle Scholar
  45. Ji ZH, Jia JH, Bai FY (2009) Four novel Candida species in the Candida albicans/Lodderomyces elongisporus clade isolated from the gut of flower beetles. Antonie van Leeuwenhoek 95:23–32PubMedCrossRefGoogle Scholar
  46. Kataoka M, Delacruz-Hidalgo AR, Akond MA, Sakuradani E, Kita K, Shimizu S (2004) Gene cloning and overexpression of two conjugated polyketone reductases, novel aldo-keto reductase family enzymes, of Candida parapsilosis. Appl Microbiol Biotechnol 64:359–366PubMedCrossRefGoogle Scholar
  47. Kim SK, El Bissati K, Ben Mamoun C (2006) Amino acids mediate colony and cell differentiation in the fungal pathogen Candida parapsilosis. Microbiology 152:2885–2894PubMedCrossRefGoogle Scholar
  48. Kohler GA, White TC, Agabian N (1997) Overexpression of a cloned IMP dehydrogenase gene of Candida albicans confers resistance to the specific inhibitor mycophenolic acid. J Bacteriol 179:2331–2338PubMedGoogle Scholar
  49. Kosa P, Valach M, Tomaska L, Wolfe KH, Nosek J (2006) Complete DNA sequences of the mitochondrial genomes of the pathogenic yeasts Candida orthopsilosis and Candida metapsilosis: insight into the evolution of linear DNA genomes from mitochondrial telomere mutants. Nucleic Acids Res 34:2472–2481PubMedCrossRefGoogle Scholar
  50. Kosa P, Gavenciakova B, Nosek J (2007) Development of a set of plasmid vectors for genetic manipulations of the pathogenic yeast Candida parapsilosis. Gene 396:338–345PubMedCrossRefGoogle Scholar
  51. Kovac L, Lazowska J, Slonimski PP (1984) A yeast with linear molecules of mitochondrial DNA. Mol Gen Genet 197:420–424PubMedCrossRefGoogle Scholar
  52. Kuhn DM, Chandra J, Mukherjee PK, Ghannoum MA (2002) Comparison of biofilms formed by Candida albicans and Candida parapsilosis on bioprosthetic surfaces. Infect Immun 70:878–888PubMedCrossRefGoogle Scholar
  53. Kuhn DM et al (2004) Candida parapsilosis characterization in an outbreak setting. Emerg Infect Dis 10:1074–1081PubMedGoogle Scholar
  54. Kurtzman CP, Robnett CJ (1997) Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5′ end of the large-subunit (26S) ribosomal DNA gene. J Clin Microbiol 35:1216–1223PubMedGoogle Scholar
  55. Laffey SF, Butler G (2005) Phenotype switching affects biofilm formation by Candida parapsilosis. Microbiology 151:1073–1081PubMedCrossRefGoogle Scholar
  56. Langeron M, Talice R (1932) Nouvelles méthodes d’étude et essai de classification des champignons levuriformes. Ann Parasitol Hum Comp 10:1–80Google Scholar
  57. Lasker BA, Butler G, Lott TJ (2006) Molecular genotyping of Candida parapsilosis group I clinical isolates by analysis of polymorphic microsatellite markers. J Clin Microbiol 44:750–759PubMedCrossRefGoogle Scholar
  58. Lee JK, Koo BS, Kim SY (2003) Cloning and characterization of the xyl1 gene, encoding an NADH-preferring xylose reductase from Candida parapsilosis, and its functional expression in Candida tropicalis. Appl Environ Microbiol 69:6179–6188PubMedCrossRefGoogle Scholar
  59. Lin D, Wu LC, Rinaldi MG, Lehmann PF (1995) Three distinct genotypes within Candida parapsilosis from clinical sources. J Clin Microbiol 33:1815–1821PubMedGoogle Scholar
  60. Lockhart SR, Messer SA, Pfaller MA, Diekema DJ (2008) Lodderomyces elongisporus masquerading as Candida parapsilosis as a cause of bloodstream infections. J Clin Microbiol 46:374–376PubMedCrossRefGoogle Scholar
  61. Logue ME, Wong S, Wolfe KH, Butler G (2005) A genome sequence survey shows that the pathogenic yeast Candida parapsilosis has a defective MTLa1 allele at its mating type locus. Eukaryot Cell 4:1009–1017PubMedCrossRefGoogle Scholar
  62. Lott TJ, Kuykendall RJ, Welbel SF, Pramanik A, Lasker BA (1993) Genomic heterogeneity in the yeast Candida parapsilosis. Curr Genet 23:463–467PubMedCrossRefGoogle Scholar
  63. Magee BB, Magee PT (2000) Induction of mating in Candida albicans by construction of MTLa and MTLalpha strains. Science 289:310–313PubMedCrossRefGoogle Scholar
  64. Maleszka R (1994) The in vivo effects of ethidium bromide on mitochondrial and ribosomal DNA in Candida parapsilosis. Yeast 10:1203–1210PubMedCrossRefGoogle Scholar
  65. Massey SE et al (2003) Comparative evolutionary genomics unveils the molecular mechanism of reassignment of the CTG codon in Candida spp. Genome Res 13:544–557PubMedCrossRefGoogle Scholar
  66. Medeiros AO, Kohler LM, Hamdan JS, Missagia BS, Barbosa FA, Rosa CA (2008) Diversity and antifungal susceptibility of yeasts from tropical freshwater environments in southeastern Brazil. Water Res 42:3921–3929PubMedCrossRefGoogle Scholar
  67. Middelhoven WJ, Coenen A, Kraakman B, Sollewijn Gelpke MD (1992) Degradation of some phenols and hydroxybenzoates by the imperfect ascomycetous yeasts Candida parapsilosis and Arxula adeninivorans: evidence for an operative gentisate pathway. Antonie van Leeuwenhoek 62:181–187PubMedCrossRefGoogle Scholar
  68. Milani G, Jarmuszkiewicz W, Sluse-Goffart CM, Schreiber AZ, Vercesi AE, Sluse FE (2001) Respiratory chain network in mitochondria of Candida parapsilosis: ADP/O appraisal of the multiple electron pathways. FEBS Lett 508:231–235PubMedCrossRefGoogle Scholar
  69. Miyakawa I, Okamuro A, Kinsky S, Visacka K, Tomaska L, Nosek J (2009) Mitochondrial nucleoids from the yeast Candida parapsilosis: expansion of the repertoire of proteins associated with mitochondrial DNA. Microbiology 155:1558–1568PubMedCrossRefGoogle Scholar
  70. Nakase T, Komagata K, Fukazawa Y (1979) A comparative taxonomic study on two forms of Candida parapsilosis. J Gen Appl Microbiol 25:375–386CrossRefGoogle Scholar
  71. Nather K, Munro CA (2008) Generating cell surface diversity in Candida albicans and other fungal pathogens. FEMS Microbiol Lett 285:137–145PubMedCrossRefGoogle Scholar
  72. Nebohacova M, Mentel M, Nosek J, Kolarov J (1999) Isolation and expression of the gene encoding mitochondrial ADP/ATP carrier (AAC) from the pathogenic yeast Candida parapsilosis. Yeast 15:1237–1242PubMedCrossRefGoogle Scholar
  73. Newlon CS, Theis JF (1993) The structure and function of yeast ARS elements. Curr Opin Genet Dev 3:752–758PubMedCrossRefGoogle Scholar
  74. Nie Y, Xu Y, Yang M, Mu XQ (2007) A novel NADH-dependent carbonyl reductase with unusual stereoselectivity for (R)-specific reduction from an (S)-1-phenyl-1, 2-ethanediol-producing micro-organism: purification and characterization. Lett Appl Microbiol 44:555–562PubMedCrossRefGoogle Scholar
  75. Nosek J, Fukuhara H (1994) NADH dehydrogenase subunit genes in the mitochondrial DNA of yeasts. J Bacteriol 176:5622–5630PubMedGoogle Scholar
  76. Nosek J, Tomaska L (eds) (2008) Origin and evolution of telomeres. Landes Bioscience, AustinGoogle Scholar
  77. Nosek J, Dinouel N, Kovac L, Fukuhara H (1995) Linear mitochondrial DNAs from yeasts: telomeres with large tandem repetitions. Mol Gen Genet 247:61–72PubMedCrossRefGoogle Scholar
  78. Nosek J, Tomaska L, Fukuhara H, Suyama Y, Kovac L (1998) Linear mitochondrial genomes: 30 years down the line. Trends Genet 14:184–188PubMedCrossRefGoogle Scholar
  79. Nosek J, Tomaska L, Pagacova B, Fukuhara H (1999) Mitochondrial telomere-binding protein from Candida parapsilosis suggests an evolutionary adaptation of a nonspecific single-stranded DNA-binding protein. J Biol Chem 274:8850–8857PubMedCrossRefGoogle Scholar
  80. Nosek J, Adamikova L, Zemanova J, Tomaska L, Zufferey R, Mamoun CB (2002a) Genetic manipulation of the pathogenic yeast Candida parapsilosis. Curr Genet 42:27–35PubMedCrossRefGoogle Scholar
  81. Nosek J, Tomaska L, Rycovska A, Fukuhara H (2002b) Mitochondrial telomeres as molecular markers for identification of the opportunistic yeast pathogen Candida parapsilosis. J Clin Microbiol 40:1283–1289PubMedCrossRefGoogle Scholar
  82. Nosek J, Novotna M, Hlavatovicova Z, Ussery DW, Fajkus J, Tomaska L (2004) Complete DNA sequence of the linear mitochondrial genome of the pathogenic yeast Candida parapsilosis. Mol Genet Genomics 272:173–180PubMedCrossRefGoogle Scholar
  83. Nosek J, Rycovska A, Makhov AM, Griffith JD, Tomaska L (2005) Amplification of telomeric arrays via rolling-circle mechanism. J Biol Chem 280:10840–10845PubMedCrossRefGoogle Scholar
  84. Nosek J, Kosa P, Tomaska L (2006) On the origin of telomeres: a glimpse at the pre-telomerase world. Bioessays 28:182–190PubMedCrossRefGoogle Scholar
  85. Padmanabhan S, Thakur J, Siddharthan R, Sanyal K (2008) Rapid evolution of Cse4p-rich centromeric DNA sequences in closely related pathogenic yeasts, Candida albicans and Candida dubliniensis. Proc Natl Acad Sci USA 105:19797–19802PubMedCrossRefGoogle Scholar
  86. Pfaller MA et al (2008) Geographic and temporal trends in isolation and antifungal susceptibility of Candida parapsilosis: a global assessment from the ARTEMIS DISK Antifungal Surveillance Program, 2001 to 2005. J Clin Microbiol 46:842–849PubMedCrossRefGoogle Scholar
  87. Pfaller MA, Messer SA, Hollis RJ (1995) Variations in DNA subtype, antifungal susceptibility, and slime production among clinical isolates of Candida parapsilosis. Diagn Microbiol Infect Dis 21:9–14PubMedCrossRefGoogle Scholar
  88. Pickett HA, Cesare AJ, Johnston RL, Neumann AA, Reddel RR (2009) Control of telomere length by a trimming mechanism that involves generation of t-circles. EMBO J 28:799–809PubMedCrossRefGoogle Scholar
  89. Ramage G, Saville SP, Thomas DP, Lopez-Ribot JL (2005) Candida biofilms: an update. Eukaryot Cell 4:633–638PubMedCrossRefGoogle Scholar
  90. Reissa E, Lasker BA, Iqbal NJ, James MJ, Arthington-Skaggs BA (2008) Molecular epidemiology of Candida parapsilosis sepsis from outbreak investigations in neonatal intensive care units. Infect Genet Evol 8:103–109PubMedCrossRefGoogle Scholar
  91. Reuβ O, Vik A, Kolter R, Morschhauser J (2004) The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene 341:119–127CrossRefGoogle Scholar
  92. Rogers PJ (1977) Efficiency of oxidative phosphorylation in continuous cultures of Candida parapsilosis. J Bacteriol 130:521–523PubMedGoogle Scholar
  93. Rossignol T, Logue ME, Reynolds K, Grenon M, Lowndes NF, Butler G (2007) Transcriptional response of Candida parapsilosis following exposure to farnesol. Antimicrob Agents Chemother 51:2304–2312PubMedGoogle Scholar
  94. Rossignol T, Ding C, Guida A, d’Enfert C, Higgins DG, Butler G (2009) Correlation between biofilm formation and the hypoxic response in Candida parapsilosis. Eukaryot Cell 8:550–559PubMedCrossRefGoogle Scholar
  95. Roy B, Meyer SA (1998) Confirmation of the distinct genotype groups within the form species Candida parapsilosis. J Clin Microbiol 36:216–218PubMedGoogle Scholar
  96. Rycovska A, Valach M, Tomaska L, Bolotin-Fukuhara M, Nosek J (2004) Linear versus circular mitochondrial genomes: intraspecies variability of mitochondrial genome architecture in Candida parapsilosis. Microbiology 150:1571–1580PubMedCrossRefGoogle Scholar
  97. San Miguel LG, Cobo J, Otheo E, Sanchez-Sousa A, Abraira V, Moreno S (2005) Secular trends of candidemia in a large tertiary-care hospital from 1988 to 2000: emergence of Candida parapsilosis. Infect Control Hosp Epidemiol 26:548–552PubMedCrossRefGoogle Scholar
  98. Sanchez-Martinez C, Perez-Martin J (2001) Dimorphism in fungal pathogens: Candida albicans and Ustilago maydis—similar inputs, different outputs. Curr Opin Microbiol 4:214–221PubMedCrossRefGoogle Scholar
  99. Santos M, Colthurst DR, Wills N, McLaughlin CS, Tuite MF (1990) Efficient translation of the UAG termination codon in Candida species. Curr Genet 17:487–491PubMedCrossRefGoogle Scholar
  100. Sanyal K, Baum M, Carbon J (2004) Centromeric DNA sequences in the pathogenic yeast Candida albicans are all different and unique. Proc Natl Acad Sci USA 101:11374–11379PubMedCrossRefGoogle Scholar
  101. Shin JH, Shin DH, Song JW, Kee SJ, Suh SP, Ryang DW (2001) Electrophoretic karyotype analysis of sequential Candida parapsilosis isolates from patients with persistent or pecurrent fungemia. J Clin Microbiol 39:1258–1263PubMedCrossRefGoogle Scholar
  102. Silva S, Henriques M, Martins A, Oliveira R, Williams D, Azeredo J (2009) Biofilms of non-Candida albicans Candida species: quantification, structure and matrix composition. Med Mycol. doi:10.1080/13693780802549594
  103. Subik J, Kolarov J, Kovac L (1974) Anaerobic growth and formation of respiration-deficient mutants of various species of yeasts. FEBS Lett 45:263–266PubMedCrossRefGoogle Scholar
  104. Suh SO, Nguyen NH, Blackwell M (2008) Yeasts isolated from plant-associated beetles and other insects: seven novel Candida species near Candida albicans. FEMS Yeast Res 8:88–102PubMedCrossRefGoogle Scholar
  105. Suzuki T, Ueda T, Watanabe K (1997) The ‘polysemous’ codon–a codon with multiple amino acid assignment caused by dual specificity of tRNA identity. EMBO J 16:1122–1134PubMedCrossRefGoogle Scholar
  106. Tavanti A, Davidson AD, Gow NA, Maiden MC, Odds FC (2005) Candida orthopsilosis and Candida metapsilosis spp. nov. to replace Candida parapsilosis groups II and III. J Clin Microbiol 43:284–292PubMedCrossRefGoogle Scholar
  107. Tavanti A, Hensgens LA, Ghelardi E, Campa M, Senesi S (2007) Genotyping of Candida orthopsilosis clinical isolates by amplification fragment length polymorphism reveals genetic diversity among independent isolates and strain maintenance within patients. J Clin Microbiol 45:1455–1462PubMedCrossRefGoogle Scholar
  108. Tomaska L, Nosek J, Fukuhara H (1997) Identification of a putative mitochondrial telomere-binding protein of the yeast Candida parapsilosis. J Biol Chem 272:3049–3056PubMedCrossRefGoogle Scholar
  109. Tomaska L, Nosek J, Makhov AM, Pastorakova A, Griffith JD (2000) Extragenomic double-stranded DNA circles in yeast with linear mitochondrial genomes: potential involvement in telomere maintenance. Nucleic Acids Res 28:4479–4487PubMedCrossRefGoogle Scholar
  110. Tomaska L, Makhov AM, Griffith JD, Nosek J (2002) t-Loops in yeast mitochondria. Mitochondrion 1:455–459PubMedCrossRefGoogle Scholar
  111. Tomaska L, McEachern MJ, Nosek J (2004) Alternatives to telomerase: keeping linear chromosomes via telomeric circles. FEBS Lett 567:142–146PubMedCrossRefGoogle Scholar
  112. Trofa D, Gacser A, Nosanchuk JD (2008) Candida parapsilosis, an emerging fungal pathogen. Clin Microbiol Rev 21:606–625PubMedCrossRefGoogle Scholar
  113. Tuite MF, Bower PA, McLaughlin CS (1986) A novel suppressor tRNA from the dimorphic fungus Candida albicans. Biochim Biophys Acta 866:26–31PubMedGoogle Scholar
  114. Valach M, Tomaska L, Nosek J (2008) Preparation of yeast mitochondrial DNA for direct sequence analysis. Curr Genet 54:105–109PubMedCrossRefGoogle Scholar
  115. van Asbeck EC, Hoepelman AI, Scharringa J, Verhoef J (2009) The echinocandin caspofungin impairs the innate immune mechanism against Candida parapsilosis. Int J Antimicrob Agents 33:21–26PubMedCrossRefGoogle Scholar
  116. van der Walt JP (1966) Lodderomyces, a new genus of the Saccharomycetaceae. Antonie van Leeuwenhoek 32:1–5PubMedCrossRefGoogle Scholar
  117. Vaysse L, Dubreucq E, Pirat JL, Galzy P (1997) Fatty hydroxamic acid biosynthesis in aqueous medium in the presence of the lipase-acyltransferase from Candida parapsilosis. J Biotechnol 53:41–46PubMedCrossRefGoogle Scholar
  118. Wang RC, Smogorzewska A, de Lange T (2004) Homologous recombination generates T-loop-sized deletions at human telomeres. Cell 119:355–368PubMedCrossRefGoogle Scholar
  119. Weber K, Sohr R, Schulz B, Fleischhacker M, Ruhnke M (2008) Secretion of E, E-farnesol and biofilm formation in eight different Candida species. Antimicrob Agents Chemother 52:1859–1861PubMedCrossRefGoogle Scholar
  120. Weems JJ Jr (1992) Candida parapsilosis: epidemiology, pathogenicity, clinical manifestations, and antimicrobial susceptibility. Clin Infect Dis 14:756–766PubMedGoogle Scholar
  121. Whelan WL, Kwon-Chung KJ (1988) Auxotrophic heterozygosities and the ploidy of Candida parapsilosis and Candida krusei. J Med Vet Mycol 26:163–171PubMedCrossRefGoogle Scholar
  122. Yamamoto H, Kawada N, Matsuyama A, Kobayashi Y (1999) Cloning and expression in Escherichia coli of a gene coding for a secondary alcohol dehydrogenase from Candida parapsilosis. Biosci Biotechnol Biochem 63:1051–1055PubMedCrossRefGoogle Scholar
  123. Zemanova J, Nosek J, Tomaska L (2004) High-efficiency transformation of the pathogenic yeast Candida parapsilosis. Curr Genet 45:183–186PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Jozef Nosek
    • 1
  • Zuzana Holesova
    • 2
  • Peter Kosa
    • 1
  • Attila Gacser
    • 3
  • Lubomir Tomaska
    • 2
  1. 1.Department of Biochemistry, Faculty of Natural SciencesComenius UniversityBratislavaSlovak Republic
  2. 2.Department of Genetics, Faculty of Natural SciencesComenius UniversityBratislavaSlovak Republic
  3. 3.Department of Microbiology, Faculty of SciencesUniversity of SzegedSzegedHungary

Personalised recommendations