Current Genetics

, Volume 55, Issue 5, pp 551–560

Endochitinase CHI2 of the biocontrol fungus Metarhizium anisopliae affects its virulence toward the cotton stainer bug Dysdercus peruvianus

  • Juliano Tomazzoni Boldo
  • Angela Junges
  • Karina Bohrer do Amaral
  • Charley Christian Staats
  • Marilene Henning Vainstein
  • Augusto Schrank
Research Article
  • 395 Downloads

Abstract

Chitinases have been implicated in fungal cell wall remodeling and play a role in exogenous chitin degradation for nutrition and competition. Due to the diversity of these enzymes, assigning particular functions to each chitinase is still ongoing. The entomopathogenic fungus Metarhizium anisopliae produces several chitinases, and here, we evaluate whether endochitinase CHI2 is involved in the pathogenicity of this fungus. We constructed strains either overexpressing or lacking the CHI2 chitinase. These constructs were validated by Southern, Northern and Western blot analysis, and chitinase production. To access the effects of CHI2 chitinase in virulence, the cotton stainer bug Dysdercus peruvianus was used as a host. CHI2 overexpression constructs showed higher efficiency in host killing suggesting that the production of this chitinase by a constitutive promoter reduces the time necessary to kill the insect. More significantly, the knock out constructs showed decreased virulence to the insects as compared to the wild type strain. The lack of this single CHI2 chitinase diminished fungal infection efficiency, but not any other detectable trait, showing that the M. anisopliae family 18, subgroup B endochitinase CHI2 plays a role in insect infection.

Keywords

Chitinase Overexpression Gene knock out Agrotransformation Metarhizium anisopliae Dysdercus peruvianus 

References

  1. Baratto CM, Silva MV, Santi L, Passaglia LMP, Schrank IS, Vainstein MH, Schrank A (2003) Expression and characterization of the 42 kDa chitinase from the biocontrol fungus Metarhizium anisopliae in Escherichia coli. Can J Microbiol 49:723–726CrossRefPubMedGoogle Scholar
  2. Baratto CM, Dutra V, Boldo JT, Leiria LB, Vainstein MH, Schrank A (2006) Isolation, characterization, and transcriptional analysis of the chitinase chi2 Gene (DQ011663) from the biocontrol fungus Metarhizium anisopliae var. anisopliae. Curr Microbiol 53:217–221CrossRefPubMedGoogle Scholar
  3. Barreto CC, Staats CC, Schrank A, Vainstein MH (2004) Distribution of chitinases in the entomopathogen Metarhizium anisopliae and effect of N-acetylglucosamine in protein secretion. Curr Microbiol 48:102–107CrossRefPubMedGoogle Scholar
  4. Bogo MR, Rota CA, Pinto H Jr, Ocampos M, Correa CT, Vainstein MH, Schrank A (1998) A chitinase encoding gene (chit1 gene) from the entomopathogen Metarhizium anisopliae: isolation and characterization of genomic and full-length cDNA. Curr Microbiol 37:221–225CrossRefPubMedGoogle Scholar
  5. Bowman SM, Free SJ (2006) The structure and synthesis of the fungal cell wall. Bioessays 28:799–808CrossRefPubMedGoogle Scholar
  6. Chen CC, Kumar HG, Kumar S, Tzean SS, Yeh KW (2007) Molecular cloning, characterization, and expression of a chitinase from the entomopathogenic fungus Paecilomyces javanicus. Curr Microbiol 55:8–13CrossRefPubMedGoogle Scholar
  7. Chen L, Shen Z, Wu J (2009) Expression, purification and in vitro antifungal activity of acidic mammalian chitinase against Candida albicans, Aspergillus fumigatus and Trichophyton rubrum strains. Clin Exp Dermatol 34:55–60CrossRefPubMedGoogle Scholar
  8. Corrado G, Arciello S, Fanti P, Fiandra L, Garonna A, Digilio MC, Lorito M, Giordana B, Pennacchio F, Rao R (2008) The Chitinase A from the baculovirus AcMNPV enhances resistance to both fungi and herbivorous pests in tobacco. Transgenic Res 17:557–571CrossRefPubMedGoogle Scholar
  9. Cove DJ (1966) The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim Biophys Acta 113:51–56PubMedGoogle Scholar
  10. Covert S, Kapoor P, Lee M, Briley A, Nairn C (2004) Agrobacterium tumefaciens-mediated transformation of Fusarium circinatum. Mycol Res 105:259–264CrossRefGoogle Scholar
  11. da Silva MV, Santi L, Staats CC, da Costa AM, Colodel EM, Driemeier D, Vainstein MH, Schrank A (2005) Cuticle-induced endo/exoacting chitinase CHIT30 from Metarhizium anisopliae is encoded by an ortholog of the chi3 gene. Res Microbiol 156:382–392CrossRefPubMedGoogle Scholar
  12. Distefano G, La Malfa S, Vitale A, Lorito M, Deng Z, Gentile A (2008) Defence-related gene expression in transgenic lemon plants producing an antimicrobial Trichoderma harzianum endochitinase during fungal infection. Transgenic Res 17:873–879CrossRefPubMedGoogle Scholar
  13. Duo-Chuan L (2006) Review of fungal chitinases. Mycopathologia 161:345–360CrossRefPubMedGoogle Scholar
  14. Dutra V, Nakazato L, Broetto L, Silveira Schrank I, Henning Vainstein M, Schrank A (2004) Application of representational difference analysis to identify sequence tags expressed by Metarhizium anisopliae during the infection process of the tick Boophilus microplus cuticle. Res Microbiol 155:245–251CrossRefPubMedGoogle Scholar
  15. Fan Y, Fang W, Guo S, Pei X, Zhang Y, Xiao Y, Li D, Jin K, Bidochka MJ, Pei Y (2007) Increased insect virulence in Beauveria bassiana strains overexpressing an engineered chitinase. Appl Environ Microbiol 73:295–302CrossRefPubMedGoogle Scholar
  16. Freimoser FM, Screen S, Bagga S, Hu G, St Leger RJ (2003) Expressed sequence tag (EST) analysis of two subspecies of Metarhizium anisopliae reveals a plethora of secreted proteins with potential activity in insect hosts. Microbiology 149:239–247CrossRefPubMedGoogle Scholar
  17. Gan Z, Yang J, Tao N, Yu Z, Zhang KQ (2007) Cloning and expression analysis of a chitinase gene Crchi1 from the mycoparasitic fungus Clonostachys rosea (syn. Gliocladium roseum). J Microbiol 45:422–430PubMedGoogle Scholar
  18. He X, Miyasaka SC, Fitch MM, Moore PH, Zhu YJ (2008) Agrobacterium tumefaciens-mediated transformation of taro (Colocasia esculenta (L.) Schott) with a rice chitinase gene for improved tolerance to a fungal pathogen Sclerotium rolfsii. Plant Cell Rep 27:903–909CrossRefPubMedGoogle Scholar
  19. Kern MF, Maraschin SD, Vom Endt D, Schrank A, Vainstein MH, Pasquali G (2009) Expression of a chitinase gene from Metarhizium anisopliae in tobacco plants confers resistance against Rhizoctonia solani. Appl Biochem Biotechnol (in press)Google Scholar
  20. Krieger de Moraes C, Schrank A, Vainstein MH (2003) Regulation of extracellular chitinases and proteases in the entomopathogen and acaricide Metarhizium anisopliae. Curr Microbiol 46:205–210CrossRefPubMedGoogle Scholar
  21. Latge JP (2007) The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol 66:279–290CrossRefPubMedGoogle Scholar
  22. Limon MC, Pintor-Toro JA, Benitez T (1999) Increased antifungal activity of Trichoderma harzianum transformants that overexpress a 33-kDa chitinase. Phytopathology 89:254–261CrossRefPubMedGoogle Scholar
  23. Lubeck I, Arruda W, Souza BK, Stanisçuaski F, Carlini CR, Schrank A, Vainstein MH (2008) Evaluation of Metarhizium anisopliae strains as potential biocontrol agents of the tick Rhipicephalus (Boophilus) microplus and the cotton stainer Dysdercus peruvianus. Fungal Ecol 1:78–88CrossRefGoogle Scholar
  24. Mamarabadi M, Jensen B, Lübeck M (2008) Three endochitinase-encoding genes identified in the biocontrol fungus Clonostachys rosea are differentially expressed. Curr Genet 54:57–70CrossRefPubMedGoogle Scholar
  25. McCreath KJ, Gooday GW (1992) A rapid and sensitive microassay for determination of chitinolytic activity. J Microbiol Methods 14:229–237CrossRefGoogle Scholar
  26. Nakazato L, Dutra V, Broetto L, Staats CC, Vainstein MH, Schrank A (2006) Development of an expression vector for Metarhizium anisopliae based on the tef-1alpha homologous promoter. Appl Microbiol Biotechnol 72:521–528CrossRefPubMedGoogle Scholar
  27. Pedrini N, Crespo R, Juarez MP (2007) Biochemistry of insect epicuticle degradation by entomopathogenic fungi. Comp Biochem Physiol C Toxicol Pharmacol 146:124–137CrossRefPubMedGoogle Scholar
  28. Pinto A, Barreto C, Schrank A, Ulhoa C, Vainstein M (1997) Purification and characterization of an extracellular chitinase from the entomopathogen Metarhizium anisopliae. Can J Microbiol 43:322–327CrossRefGoogle Scholar
  29. Qazi SS, Khachatourians GG (2007) Hydrated conidia of Metarhizium anisopliae release a family of metalloproteases. J Invertebr Pathol 95:48–59CrossRefPubMedGoogle Scholar
  30. Quecine MC, Araujo WL, Marcon J, Gai CS, Azevedo JL, Pizzirani-Kleiner AA (2008) Chitinolytic activity of endophytic Streptomyces and potential for biocontrol. Lett Appl Microbiol 47:486–491CrossRefPubMedGoogle Scholar
  31. Sambrook J, Russel D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  32. Screen SE, Hu G, St Leger RJ (2001) Transformants of Metarhizium anisopliae sf. anisopliae overexpressing chitinase from Metarhizium anisopliae sf. acridum show early induction of native chitinase but are not altered in pathogenicity to Manduca sexta. J Invertebr Pathol 78:260–266CrossRefPubMedGoogle Scholar
  33. Seidl V (2008) Chitinases of filamentous fungi: a large group of diverse proteins with multiple physiological functions. Fungal Biol Rev 22:36–42CrossRefGoogle Scholar
  34. Seidl V, Huemer B, Seiboth B, Kubicek CP (2005) A complete survey of Trichoderma chitinases reveals three distinct subgroups of family 18 chitinases. FEBS J 272:5923–5939CrossRefPubMedGoogle Scholar
  35. Shah JM, Raghupathy V, Veluthambi K (2009) Enhanced sheath blight resistance in transgenic rice expressing an endochitinase gene from Trichoderma virens. Biotechnol Lett 31:239–244CrossRefPubMedGoogle Scholar
  36. Silvar C, Merino F, Diaz J (2008) Differential activation of defense-related genes in susceptible and resistant pepper cultivars infected with Phytophthora capsici. J Plant Physiol 165:1120–1124CrossRefPubMedGoogle Scholar
  37. Staats CC, Junges A, Fitarelli M, Furlaneto MC, Vainstein MH, Schrank A (2007) Gene inactivation mediated by Agrobacterium tumefaciens in the filamentous fungi Metarhizium anisopliae. Appl Microbiol Biotechnol 76:945–950CrossRefPubMedGoogle Scholar
  38. Staniscuaski F, Ferreira-Dasilva CT, Mulinari F, Pires-Alves M, Carlini CR (2005) Insecticidal effects of canatoxin on the cotton stainer bug Dysdercus peruvianus (Hemiptera: Pyrrhocoridae). Toxicon 45:753–760CrossRefPubMedGoogle Scholar
  39. Takaya N, Yamazaki D, Horiuchi H, Ohta A, Takagi M (1998) Cloning and characterization of a chitinase-encoding gene (chiA) from Aspergillus nidulans, disruption of which decreases germination frequency and hyphal growth. Biosci Biotechnol Biochem 62:60–65CrossRefPubMedGoogle Scholar
  40. Wang C, St Leger RJ (2007) The Metarhizium anisopliae perilipin homolog MPL1 regulates lipid metabolism, appressorial turgor pressure, and virulence. J Biol Chem 282:21110–21115CrossRefPubMedGoogle Scholar
  41. Wang S, Leclerque A, Pava-Ripoll M, Fang W, St Leger RJ (2009) Comparative genomics using microarrays reveals divergence and loss of virulence associated genes in host specific strains of the insect pathogen Metarhizium anisopliae. Eukaryot Cell (in press)Google Scholar
  42. Yamazaki H, Yamazaki D, Takaya N, Takagi M, Ohta A, Horiuchi H (2007) A chitinase gene, chiB, involved in the autolytic process of Aspergillus nidulans. Curr Genet 51:89–98CrossRefPubMedGoogle Scholar
  43. Yamazaki H, Tanaka A, Kaneko J, Ohta A, Horiuchi H (2008) Aspergillus nidulans ChiA is a glycosylphosphatidylinositol (GPI)-anchored chitinase specifically localized at polarized growth sites. Fungal Genet Biol 45:963–972CrossRefPubMedGoogle Scholar
  44. Yu JH, Hamari Z, Han KH, Seo JA, Reyes-Dominguez Y, Scazzocchio C (2004) Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol 41:973–981CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Juliano Tomazzoni Boldo
    • 1
  • Angela Junges
    • 1
  • Karina Bohrer do Amaral
    • 1
  • Charley Christian Staats
    • 1
  • Marilene Henning Vainstein
    • 1
  • Augusto Schrank
    • 1
  1. 1.Programa de Pós-graduação em Biologia Celular e Molecular (PPGBCM)Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul (CBiot/UFRGS)Porto AlegreBrazil

Personalised recommendations