Current Genetics

, 55:349 | Cite as

Transformation of an oleaginous zygomycete Mortierella alpina 1S-4 with the carboxin resistance gene conferred by mutation of the iron–sulfur subunit of succinate dehydrogenase

  • Akinori Ando
  • Eiji Sakuradani
  • Kota Horinaka
  • Jun Ogawa
  • Sakayu ShimizuEmail author
Technical Note


The sdhB gene encoding an iron–sulfur (Ip) subunit of succinate dehydrogenase (SDH, EC complex was cloned from Mortierella alpina 1S-4. The deduced amino acid sequence of SdhB from M. alpina 1S-4 showed high similarity to those of SdhB from other organisms. The mutated sdhB (CBXB) gene encodes a modified SdhB with an amino-acid substitution (a highly conserved histidine residue within the third cysteine-rich cluster of SdhB replaced by a leucine residue) and is known to confer carboxin resistance. We succeeded in transforming M. alpina 1S-4 by using the CBXB gene as a selectable marker gene and expressing the heterologous uidA gene encoding β-glucuronidase of Escherichia coli. Moreover, transformation efficiency was up to 40–50 transformants per 4.0 × 108 spores. This carboxin-transformation system, characterized by marginal background growth and mitotic stability in M. alpina 1S-4, is considered to be widely useful for the wild strain, M. alpina 1S-4, and various derivative mutants without laborious preparation of auxotrophic mutants as a host strain.


Mortierella alpina 1S-4 Transformation Carboxin Succinate dehydrogenase Polyunsaturated fatty acids β-Glucuronidase 



This work was partially supported by the Project for the Development of a Technological Infrastructure for Industrial Bioprocesses on R&D of New Industrial Science and Technology Frontiers (to S.S.), the Industrial Technology Research Grant Program (No. 05A07003d to E.S.) of the New Energy and Industrial Technology Development Organization, Japan, Grants-in-Aid for Scientific Research (No. 16688004 to J.O. and No. 19688006 to E.S.), and COE for Microbial-Process Development Pioneering Future Production Systems (to S.S.) from the Ministry of Education, Science, Sports, and Culture, Japan.


  1. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  2. Broomfield PLE, Hargreaves JA (1992) A single amino-acid change in the iron-sulfur protein subunit of succinate dehydrogenase confers resistance to carboxin in Ustilago maydis. Curr Genet 22:117–121PubMedCrossRefGoogle Scholar
  3. Honda Y, Matsuyama T, Irie T, Watanabe T, Kuwahara M (2000) Carboxin resistance transformation of the homobasidiomycete fungus Pleurotus ostreatus. Curr Genet 37:209–212PubMedCrossRefGoogle Scholar
  4. Irie T, Honda Y, Matsuyama T, Watanabe T, Kuwahara M (1998) Cloning and characterization of the gene encoding the iron-sulfur protein of succinate dehydrogenase from Pleurotus ostreatus. Biochim Biophys Acta 1396:27–31PubMedGoogle Scholar
  5. Irie T, Sato T, Saito K, Honda Y, Watanabe T, Kuwahara M, Enei H (2003) Construction of a homologous selectable marker gene for Lentinula edodes transformation. Biosci Biotechnol Biochem 67:2006–2009PubMedCrossRefGoogle Scholar
  6. Jareonkitmongkol S, Kawashima H, Shirasaka N, Shimizu S, Yamada H (1992) Production of dihomo-γ-linolenic acid by a Δ5-desaturase-defective mutant of Mortierella alpina 1S-4. Appl Environ Microbiol 58:2196–2200PubMedGoogle Scholar
  7. Jareonkitmongkol S, Shimizu S, Yamada H (1993) Production of an eicosapentaenoic acid-containing oil by a Δ12 desaturase-defective mutant of Mortierella alpina 1S-4. J Am Oil Chem Soc 70:119–123CrossRefGoogle Scholar
  8. Jefferson RA, Burgess SM, Hirsh D (1986) β-Glucuronidase from Escherichia coli as a gene-fusion marker. Proc Natl Acad Sci USA 83:8447–8451PubMedCrossRefGoogle Scholar
  9. Kawashima H, Kamada N, Sakuradani E, Jareonkitmongkol S, Akimoto K, Shimizu S (1997) Production of 8, 11, 14, 17-cis-eicosatetraenoic acid by Δ5 desaturase-defective mutants of an arachidonic acid-producing fungus, Mortierella alpina. J Am Oil Chem Soc 74:455–459CrossRefGoogle Scholar
  10. Keon JPR, White GA, Hargreaves JA (1991) Isolation, characterization and sequence of a gene conferring resistance to the systemic fungicide carboxin from the maize smut pathogen, Ustilago maydis. Curr Genet 19:475–481PubMedCrossRefGoogle Scholar
  11. Mackenzie DA, Wongwathanarat P, Carter AT, Archer DB (2000) Isolation and use of a homologous histone H4 promoter and a ribosomal DNA region in a transformation vector for the oil-producing fungus Mortierella alpina. Appl Environ Microbiol 66:4655–4661PubMedCrossRefGoogle Scholar
  12. Ohta S, Mita S, Hattori T, Nakamura K (1990) Construction and expression in tobacco of a β-glucuronidase (GUS) reporter gene containing an intron within the coding sequence. Plant Cell Physiol 31:805–813Google Scholar
  13. Oita S, Fushimi T, Ookura T, Ito Y, Yanagi SO (1997) Flutolanil resistance as a genetic marker of Coprinus cinereus strains. Biosci Biotech Biochem 61:2145–2147CrossRefGoogle Scholar
  14. Sakuradani E, Kobayashi M, Shimizu S (1999) Δ9-fatty acid desaturase from arachidonic acid-producing fungus: unique gene sequence and its heterologous expression in a fungus, Aspergillus. Euro J Biochem 260:208–216CrossRefGoogle Scholar
  15. Sakuradani E, Takeno S, Abe T, Shimizu S (2005) Arachidonic acid-producing Mortierella alpina: creation of mutants and molecular breeding. In: Cohen Z, Ratledge C (eds) Single cell oils. AOCS Press, Champaign, pp 21–35Google Scholar
  16. Shima Y, Ito Y, Kaneko S, Hatabayashi H, Watanabe Y, Adachi Y, Yabe K (2008) Identification of three mutant loci conferring carboxin-resistance and development of a novel transformation system in Aspergillus oryzae. Fungal Genet Biol 46:67–76PubMedCrossRefGoogle Scholar
  17. Shimizu S, Ogawa J, Kataoka M, Kobayashi M (1997) Screening of novel microbial enzymes for the production of biologically and chemically useful compounds. Adv Biochem Eng Biotechnol 58:45–87PubMedGoogle Scholar
  18. Skinner T, Bailey A, Renwick A, Keon J, Gurr S, Hargreaves J (1998) A single amino-acid substitution in the iron-sulphur protein subunit of succinate dehydrogenase determines resistance to carboxin in Mycosphaerella graminicola. Curr Genet 34:393–398PubMedCrossRefGoogle Scholar
  19. Tada S, Gomi K, Kitamoto K, Takahashi K, Tamura G, Hara S (1991) Construction of a fusion gene comprising the Taka-amylase A promoter and the Escherichia coli β-glucuronidase gene and analysis of its expression in Aspergillus oryzae. Mol Gen Genet 229:301–306PubMedCrossRefGoogle Scholar
  20. Takeno S, Sakuradani E, Murata S, Inohara-Ochiai M, Kawashima H, Ashikari T, Shimizu S (2004a) Cloning and sequencing of the ura3 and ura5 genes, and isolation and characterization of uracil auxotrophs of the fungus Mortierella alpina 1S-4. Biosci Biotechnol Biochem 68:277–285PubMedCrossRefGoogle Scholar
  21. Takeno S, Sakuradani E, Murata S, Inohara-Ochiai M, Kawashima H, Ashikari T, Shimizu S (2004b) Establishment of an overall transformation system for an oil-producing filamentous fungus, Mortierella alpina 1S-4. Appl Microbiol Biotechnol 65:419–425PubMedCrossRefGoogle Scholar
  22. Takeno S, Sakuradani E, Murata S, Inohara-Ochiai M, Kawashima H, Ashikari T, Shimizu S (2005a) Molecular evidence that the rate-limiting step for the biosynthesis of arachidonic acid in Mortierella alpina is at the level of an elongase. Lipids 40:25–30PubMedCrossRefGoogle Scholar
  23. Takeno S, Sakuradani E, Tomi A, Inohara-Ochiai M, Kawashima H, Shimizu S (2005b) Transformation of oil-producing fungus, Mortierella alpina 1S-4, using Zeocin, and application to arachidonic acid production. J Biosci Bioeng 100:617–622PubMedCrossRefGoogle Scholar
  24. Ulrich JT, Mathre DE (1972) Mode of action of oxathiin systemic fungicides V. Effect on electron transport system of Ustilago maydis and Saccharomyces cerevisiae. J Bacteriol 110:628–632PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Akinori Ando
    • 2
  • Eiji Sakuradani
    • 1
  • Kota Horinaka
    • 1
  • Jun Ogawa
    • 2
  • Sakayu Shimizu
    • 1
    Email author
  1. 1.Laboratory of Fermentation Physiology and Applied Microbiology, Division of Applied Life Sciences, Graduate School of AgricultureKyoto UniversityKyotoJapan
  2. 2.Research Division of Microbial SciencesKyoto UniversityKyotoJapan

Personalised recommendations