Current Genetics

, Volume 55, Issue 2, pp 151–161 | Cite as

The BEM46-like protein appears to be essential for hyphal development upon ascospore germination in Neurospora crassa and is targeted to the endoplasmic reticulum

  • Moritz Mercker
  • Krisztina Kollath-Leiß
  • Silke Allgaier
  • Nancy Weiland
  • Frank KempkenEmail author
Research Article


The bud emergence (BEM)46 proteins are evolutionarily conserved members of the α/β-hydrolase super family, but their exact role remains unknown. To better understand the cellular role of BEM46 and its homologs, we used the model organism Neurospora crassa in conjunction with bem46 RNAi, over-expression vectors, and repeat induced point mutation analyzes. We clearly demonstrated that BEM46 is required for cell type-specific hyphal growth, which indicates a role for BEM46 in maintaining polarity. Vegetative hyphae, perithecia, and ascospores developed normally, but hyphae germinating from ascospores exhibited a loss-of-polarity phenotype. We also found that the BEM46 protein is targeted to the perinuclear endoplasmic reticulum (ER) and also localizes at or close to the plasma membrane. Our findings show that BEM46 can be used as a new ER marker for filamentous fungi, the first for N. crassa. Our data suggest that BEM46 plays a role in a signal transduction pathway involved in determining or maintaining cell type-specific polarity. This implies a higher degree of fungal hyphae differentiation than previously expected. This work also has implications for higher eukaryotic cells with polarized growth, such as pollen tubes or neuronal cells.


Cell type-specific growth Ascospore germination Polarity ER localization Neurospora crassa Bud emergence 46-like (bem46



The authors thank Hanna Schmidt for excellent technical assistance. We thank the Zentrum für Molekularbiologie und Biochemie, Kiel for assistance with the Nanodrop apparatus and Ruth Schmitz-Streit for providing access to her 7,300 real-time PCR system. English language editing was performed by San Francisco Edit.


  1. Arimura N, Kaibuchi K (2005) Key regulators in neuronal polarity. Neuron 48:881–884PubMedCrossRefGoogle Scholar
  2. Arpaia G, Loros JJ, Dunlap JC, Morelli G, Macino G (1995) Light induction of the clock-controlled gene ccg–1 is not transduced through the circadian clock in Neurospora crassa. Mol Gen Genet 247:157–163PubMedCrossRefGoogle Scholar
  3. Barbato C, Calissano M, Pickford A, Romano N, Sandmann G, Macino G (1996) Mild RIP—an alternative method for in vivo mutagenesis of the albino-3 gene in Neurospora crassa. Mol Gen Genet 252:353–361PubMedGoogle Scholar
  4. Bedell VM et al (2005) Roundabout4 is essential for angiogenesis in vivo. Proc Natl Acad Sci USA 102:6373–6378PubMedCrossRefGoogle Scholar
  5. Borges MI, Azevedo MO, Bonatelli R, Felipe MSS, Astolfi-Filho S (1990) A practical method for preparation of total DNA from filamentous fungi. Fungal Genet Newsl 37:269–276Google Scholar
  6. Bowring FJ, Catcheside DEA (1993) The effect of rec-2 on repeat-induced point mutation (RIP) and recombination events that excise DNA sequence duplications at the his-3 locus of Neurospora crassa. Curr Genet 23:496–500PubMedCrossRefGoogle Scholar
  7. Bruno KS, Aramayo R, Minke PF, Metzenberg RL, Plamann M (1996) Loss of growth polarity and mislocalization of septa in a Neurospora mutant altered in the regulatory subunit of cAMP-dependent protein kinase. Embo J 15:5772–5782PubMedGoogle Scholar
  8. Cabib E, Drgonová J, Drgon T (1998) Role of small G proteins in yeast cell polarization and wall biosynthesis. Annu Rev Biochem 67:307–333PubMedCrossRefGoogle Scholar
  9. Cambareri EB, Jensen BC, Schabacht E, Selker EU (1989) Repeat-induced G–C to A–T mutations in Neurospora. Science 244:1571–1575PubMedCrossRefGoogle Scholar
  10. Cambareri EB, Singer MJ, Selker EU (1991) Recurrence of repeat-induced point mutation (RIP) in Neurospora crassa. Genetics 127:699–710PubMedGoogle Scholar
  11. Chang B, Nakashima H (1998) Isolation of a temperature-sensitive rythm mutant in Neurospora crassa. Genes Genet Syst 73:71–73CrossRefGoogle Scholar
  12. Chant J, Corrado K, Pringle JR, Herskowitz I (1991) Yeast BUD5 encoding a putative GDP–GTP exchange factor, is necessary for bud site selection and interacts with bud formation gene BEM1. Cell 65:1213–1224PubMedCrossRefGoogle Scholar
  13. Chenevert J, Corrado K, Bender A, Pringle J, Herskowitz I (1993) A yeast (BEM1) necessary for cell polarization whose product contains two SH3 domains. Nature 356:77–79CrossRefGoogle Scholar
  14. Davis RH (1979) The genetics of arginine biosynthesis in Neurospora crassa. Genetics 93:557–575PubMedGoogle Scholar
  15. Estrada de Martin P, Du Y, Novick P, Ferro-Novick S (2005) Ice2p is important for the distribution and structure of the cortical ER network in Saccharomyces cerevisiae. J Cell Sci 118:65–77PubMedCrossRefGoogle Scholar
  16. Faulhammer F, Konrad G, Brankatschk B, Tahirovic S, Knodler A, Mayinger P (2005) Cell growth-dependent coordination of lipid signaling and glycosylation is mediated by interactions between Sac1p and Dpm1p. J Cell Biol 168:185–191PubMedCrossRefGoogle Scholar
  17. Fernández-Ábalos JM, Fox H, Pitt C, Wells B, Doonan JH (1998) Plant-adapted green fluorescent protein is a versatile vital reporter for gene expression, protein localization and mitosis in the filamentous fungus, Aspergillus nidulans. Mol Microbiol 27:121–130PubMedCrossRefGoogle Scholar
  18. Freitag M, Hickey PC, Raju NB, Selker EU, Read ND (2004) GFP as a tool to analyze the organisation. dynamics and function of nuclei and microtubules in Neurospora crassa. Fungal Genet Biol 41:897–910PubMedCrossRefGoogle Scholar
  19. Galagan JE, Selker EU (2004) RIP: the evolutionary cost of genome defense. Trends Genet 20:417–423PubMedCrossRefGoogle Scholar
  20. Galagan JE et al (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859–868PubMedCrossRefGoogle Scholar
  21. Garnjobst L, Tatum EL (1967) A survey of new morphological mutants in Neurospora crassa. Genetics 57:579–604PubMedGoogle Scholar
  22. Giaever G et al (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391PubMedCrossRefGoogle Scholar
  23. Giot L (2003) A protein interaction map of Drosophila melanogaster. Science 302:1727–1736PubMedCrossRefGoogle Scholar
  24. Grimme SJ et al (2004) Deficiencies in the endoplasmic reticulum (ER)-membrane protein Gab1p perturb transfer of glycosylphosphatidylinositol to proteins and cause perinuclear ER-associated actin bar formation. Mol Biol Cell 15:2758–2770PubMedCrossRefGoogle Scholar
  25. Hickey C, Jacobson DJ, Read ND, Glass NL (2002) Live-cell imaging of vegetative hyphal fusion in Neurospora crassa. Fungal Genet Biol 37:109–119PubMedCrossRefGoogle Scholar
  26. Holmquist M (2000) Alpha/Beta-Hydrolase fold enzymes: structures, functions and mechanisms. Curr Prot Peptid Sci 1:209–235CrossRefGoogle Scholar
  27. Howad W, Kempken F (1997) Cell-type specific loss of atp6 RNA editing in cytoplasmic male sterile Sorghum bicolor. Proc Natl Acad Sci USA 94:11090–11095PubMedCrossRefGoogle Scholar
  28. Hu H et al (2005) Cross GTPase-activating protein (CrossGAP)/Vilse links the Roundabout receptor to Rac to regulate midline repulsion. Proc Natl Acad Sci USA 102:4613–4618PubMedCrossRefGoogle Scholar
  29. Irazoqui JE, Gladfelter AS, Lew DJ (2003) Scaffold-mediated symmetry breakting by Cdc24p. Nat Cell Biol 5:1062–1070PubMedCrossRefGoogle Scholar
  30. Kawahara A, Che Y-S RH, Takeda H, DI B (2005) Zebrafish GADD45-beta genes are involved in somite segmentation. Proc Natl Acad Sci USA 102:361–366PubMedCrossRefGoogle Scholar
  31. Kempken F (2001) Hideaway, a repeated element from Ascobolus immersus is rDNA associated and may resemble a class I transposon. Curr Genet 40:179–185PubMedGoogle Scholar
  32. Kempken F, Kück U (1996) Restless, an active Ac-like transposon from the fungus Tolypocladium inflatum: structure, expression, and alternative RNA splicing. Mol Cell Biol 16:6563–6572PubMedGoogle Scholar
  33. Kuratsu M, Taura A, Shoji JY, Kikuchi S, Arioka M, Kitamoto K (2007) Systematic analysis of SNARE localization in the filamentous fungus Aspergillus oryzae. Fungal Genet Biol. 44:1310–1323PubMedCrossRefGoogle Scholar
  34. Leeder AC, Turner G (2008) Characterisation of Aspergillus nidulans polarisome component BemA. Fungal Genet Biol 45:897–911 Epub 2007 Dec 2008PubMedCrossRefGoogle Scholar
  35. Loros JJ, Denome SA, Dunlap JC (1989) Molecular cloning of genes under control of the circadian clock in Neurospora. Science 243:385–388PubMedCrossRefGoogle Scholar
  36. Madden K, Synder M (1998) Cell polarity and morphogenesis in budding yeast. Annu Rev Microbiol 52:687–744PubMedCrossRefGoogle Scholar
  37. Mannhaupt G et al (2003) What’s in the genome of a filamentous fungus? Analysis of the Neurospora genome sequence. Nucleic Acids Res 31:1944–1954PubMedCrossRefGoogle Scholar
  38. Margolin BS, Freitag M, Selker EU (1997) Improved plasmids for gene targeting at the his-3 locus of Neurospora crassa by electroporation. Fungal Genet Newsl 44:34–36Google Scholar
  39. Matsuyama A et al (2006) ORFeome cloning and global analysis of protein localization in the fission yeast Schizosaccharomyces pombe. Nat Biotech 24:841–847CrossRefGoogle Scholar
  40. Mochizuki S et al (2005) The Arabidopsis WAVY GROWTH 2 protein modulates root bending in response to environmental stimuli. Plant Cell 17:537–547PubMedCrossRefGoogle Scholar
  41. Murray JC, Srb AM (1961) A mutant locus determining abnormal morphology and ascospore lethality in Neurospora. J Hered 52:149–153Google Scholar
  42. Ollis DL et al (1992) The α/β hydrolase fold. Protein Eng 5:197–211PubMedCrossRefGoogle Scholar
  43. Park HO, Pringle JR, Herskowitz I (1997) Two active states of the Ras-related Bud1/Rsr1 protein bind two different effectors to determine yeast cell polarity. Proc Natl Acad Sci USA 94:4463–4468PubMedCrossRefGoogle Scholar
  44. Parmentier ML et al (2000) Rapsinoid/partner of inscuteable controls asymmetric division of larval neuroblasts in Drosophila. J Neurosci 20:RC84PubMedGoogle Scholar
  45. Perkins DD, Margolin BS, Selker EU, Haedo SD (1997) Occurence of repeat-induced point mutations in long segmental duplications of Neurospora. Genetics 141:125–136Google Scholar
  46. Perkins DD, Radford A, Sachs MS (2001) The Neurospora compendium chromosomal loci. Academic Press, San DiegoGoogle Scholar
  47. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor Lab Press, New YorkGoogle Scholar
  48. Schlesinger A, Shilo BZ (2005) ER retention of signaling modules. Dev Cell 8:136–137PubMedCrossRefGoogle Scholar
  49. Seiler S, Plamann M (2003) The genetic basis of cellular morphogenesis in the filamentous fungus Neurospora crassa. Mol Biol Cell 14:4352–4364PubMedCrossRefGoogle Scholar
  50. Selker EU (1997) Epigenetic phenomena in filamentous fungi: useful paradigms or repeat-induced confusion? Trends Genet 13:296–301PubMedCrossRefGoogle Scholar
  51. Shiu P, Metzenberg R (2002) Meiotic silencing by unpaired DNA: properties, regulation and suppression. Genetics 161:1483–1495PubMedGoogle Scholar
  52. Staudinger M, Kempken F (2003) Electroporation of isolated higher-plant mitochondria: transcripts of an introduced cox2 gene, but not an atp6 gene, are edited in organello. Mol Genet Genomics 269:553–561PubMedCrossRefGoogle Scholar
  53. Talaat AM, Lyons R, Howard ST, Johnston SA (2004) The temporal expression profile of Mycobacterium tuberculosis infection in mice. Proc Natl Acad Sci USA 101:4602–4607PubMedCrossRefGoogle Scholar
  54. Temporini ED, Alvarez ME, Mautino MR, Folco HD, Rosa AL (2004) The Neurospora crassa cfp promotor drives a carbon source-dependent expression of transgenes in filamentous fungi. J Appl Microbiol 96:1256–1264PubMedCrossRefGoogle Scholar
  55. Valencik ML, Pringle JR (1995) Schizosaccharomyces pombe bem1/bud5 suppressor (bem46) mRNA. In. EMBL database, accession number U29892Google Scholar
  56. Veit K et al (2006) Global transcriptional analysis of Methanosarcina mazei strain Gö1 under different nitrogen availabilities. Mol Genet Genomics 276:41–55PubMedCrossRefGoogle Scholar
  57. Vogel HJ (1956) A convenient growth medium for Neurospora (medium N). Microbiol Genet Bull 13:42–43Google Scholar
  58. Wedlich-Söldner R, Schulz I, Straube A, Steinberg G (2002) Dynein supports motility of endoplasmic reticulum in the fungus Ustilago maydis. Mol Biol Cell 13:965–977PubMedCrossRefGoogle Scholar
  59. Yamamoto A, Nagano T, Takehara S, Hibi M, Aizawa S (2005) Shisa promotes head formation through the inhibition of receptor protein maturation for the caudalizing factors, Wnt and FGF. Cell 120:223–235PubMedCrossRefGoogle Scholar
  60. Yuan GF, Marzluf GA (1992) Molecular characterization of mutations of nit4, the pathway-specific regulatory gene which controls nitrate assimilation in Neurospora crassa. Mol Microbiol 6:67–73PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Moritz Mercker
    • 1
    • 2
  • Krisztina Kollath-Leiß
    • 1
  • Silke Allgaier
    • 1
    • 3
  • Nancy Weiland
    • 1
    • 4
  • Frank Kempken
    • 1
    Email author
  1. 1.Abteilung für Botanik mit Schwerpunkt Genetik und Molekularbiologie, Botanisches InstitutChristian-Albrechts-Universität zu KielKielGermany
  2. 2.Institut für Angewandte MathematikUniversität HeidelbergHeidelbergGermany
  3. 3.Neugenesis CorporationBurlingameUSA
  4. 4.Institut für Allgemeine MikrobiologieChristian-Albrechts-Universität zu KielKielGermany

Personalised recommendations