Current Genetics

, Volume 55, Issue 1, pp 19–43 | Cite as

The green algal eyespot apparatus: a primordial visual system and more?

Review

Abstract

Most flagellate green algae exhibiting phototaxis posses a singular specialized light sensitive organelle, the eyespot apparatus (EA). Its design principles are similar in all green algae and produce, in conjunction with the movement pattern of the cell, a highly directional optical device. It enables an oriented movement response with respect to the direction and intensity of light. The functional EA involves local specializations of different compartments (plasma membrane, cytosol, and chloroplast) and utilizes specialized microbial-type rhodopsins, which act as directly light-gated ion channels. Due to their elaborate structures and the presence of retinal-based photoreceptors in some lineages, algal EAs are thought to play an important role in the evolution of photoreception and are thus not only of interest to plant biologists. In green algae considerable progress in the molecular dissection of components of this primordial visual system has been made by genetic and proteomic approaches in recent years. This review summarizes general aspects of the green algal EA as well as recent progress in the identification of proteins related to it. Further, novel data supporting a link between eyespot globules and plastoglobules will be presented and potential additional roles of the EA besides those in photoreception will be discussed.

Keywords

Chlamydomonas reinhardtii Channelrhodopsins Eyespot function Light perception Phototaxis Plastoglobules 

Notes

Acknowledgments

The author gratefully acknowledges continuous financial support by the Deutsche Forschungsgemeinschaft. Special thanks is given to all current and former members of my lab and my co-workers during the last two decades of work in this fascinating field of algal cell biology. Sharing of prepublished material by several colleagues is also gratefully acknowledged. A special thank for continuous good collaboration in all aspects of electron microscopy is given to S. Geimer. Thanks also to M. Gutensohn for the Toc34-antisense plants, to B. Marin for the different moss cultures, and to S. Renninger and A. Mollwo for their engagement within the plastoglobuli project. Finally, I would like to thank P. Hegemann, M. Lohr and M. Mittag for critical comments on the manuscript and T. Reißenweber for preparation of Fig. 2a.

Supplementary material

294_2008_224_MOESM1_ESM.pdf (108 kb)
Supplemental Fig. 1 Whole-mount electron microscopy of isolated plastoglobules from Pisum sativum. The sample was taken directly from the final sucrose gradient, fixed and negatively stained on the grid. Note the tendency of the plastoglobules to form aggregates without fusing and the variation in globule size (minimum: 15 nm, maximum: 148 nm; n = 216 globules). Scale bars: 100 nm. (PDF 107 kb)

Supplemental video This video demonstrates eyespot reflectivity at a reduced frame rate (15 frames per second). Cells of C. reinhardtii close to and partially sticking to the surface of a petridish were analyzed with epireflection microscopy. Note the dependence of the reflection signal from the relative orientation of the eyespot towards the light source. A bright reflection signal only appears when the eyespot is oriented towards the light source. (MOV 6096 kb)

References

  1. Albertano P, Barsanti L, Passarelli V, Gualtieri P (2000) A complex photoreceptive structure in the cyanobacterium Leptolyngbya sp. Micron 31:27–34PubMedGoogle Scholar
  2. Allmer J, Naumann B, Markert C, Zhang M, Hippler m (2006) Mass spectrometric genomic data mining: novel insights into bioenergetic pathways in Chlamydomonas reinhardtii. Proteomics 6:6207–6220PubMedGoogle Scholar
  3. Andersen RA, Barr DJS, Lynn DH, Melkonian M, Moestrup Ø, Sleigh MA (1991) Terminology and nomenclature of the cytoskeletal elements associated with the flagellar/ciliary apparatus in protists. Protoplasma 164:1–8Google Scholar
  4. Arnott HJ, Brown RM Jr (1967) Ultrastructure of the eyespot and its possible significane in phototaxis of Tetracystis excentrica. J Protozool 14:529–539Google Scholar
  5. Austin JR 2nd, Frost E, Vidi P-A, Kessler F, Staehlin LA (2006) Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell 18:1693–1703PubMedGoogle Scholar
  6. Bamann C, Kirsch T, Nagel G, Bamberg E (2008) Spectral characteristics of the photocycle of channelrhodopsin-2 and its implication for channel function. J Mol Biol 375:686–694PubMedGoogle Scholar
  7. Beckmann M, Hegemann P (1991) In vitro identification of rhodopsin in the green alga Chlamydomonas. Biochemistry 30:3692–3697PubMedGoogle Scholar
  8. Beech PL, Heimann K, Melkonian M (1991) Development of the flagellar apparatus during the cell cycle in unicellular algae. Protoplasma 164:23–37Google Scholar
  9. Berthold P, Tsunoda SP, Ernst OP, Mages W, Gradmann D, Hegemann P (2008) Channelrhodopsin-1 initiates phototaxis and photophobic responses in Chlamydomonas by immediate light-induced depolarization. Plant Cell 20:1665–1677PubMedGoogle Scholar
  10. Bonora A, Pancaldi S, Gualandri R, Fasulo MP (2000) Carotenoid and ultrastructure variations in plastids of Arum italicum Miller fruit during maturation and ripening. J Exp Botany 51:873–884Google Scholar
  11. Boudreau E, Takahashi Y, Lemieux C, Turmel M, Rochaix J-D (1997) The chloroplast ycf3 and ycf4 open reading frames of Chlamydomonas reinhardtii are required for the accumulation of the photosystem I complex. EMBO J 16:6095–6104PubMedGoogle Scholar
  12. Bréhélin C, Kessler F, van Wijk KJ (2007) Plastoglobules: versatile lipoprotein particles in plastids. Trends Plant Sci 12:260–266PubMedGoogle Scholar
  13. Brown PJP, Zakryś B, Farmer MA (2003) Plastid morphology, ultrastructure, and development in Colacium and the loricate Euglenophytes (Euglenophyceae). J Phycol 39:115–121Google Scholar
  14. Cáceres EJ, Parodi ER (1998) Fine structure of zoosporegenesis, zoospore germination, and early gametophyte development in Cladophora surera (Cladophorales, Chlorophyta). J Phycol 34:825–834Google Scholar
  15. Campbell EO, Outred HA (1995) Phaeoceros delicates a new species of Anthocerotae from New Zealand. New Zealand J Bot 33:285–290Google Scholar
  16. Cheng Z, Sattler S, Maeda H, Sakuragi Y, Bryant DA, DellaPenna D (2003) Highly divergent methyltransferases catalyze a conserved reaction in tocopherol and plastoquinone synthesis in cyanobacteria and photosynthetic eukaryotes. Plant Cell 15:2343–2356PubMedGoogle Scholar
  17. Clayton MN, Shankly CM (1987) The apical meristem of Splachnidium rugosum (Phaeophyta). J Phycol 23:296–307Google Scholar
  18. Crawford RM (1973) The protoplasmic ultrastructure of the vegetative cell of Melosira varians C.A. Agradh. J Phycol 9:50–61Google Scholar
  19. Crescitelli F, James TW, Erickson JM, Loew ER, McFarland WN (1992) The eyespot of Chlamydomonas reinhardtii: a comparative microspectrophotometric study. Vision Res 32:1593–1600PubMedGoogle Scholar
  20. Davies JS, Rands DG, Lachapelle M (1989) Heavily lichenized Physolinum (Chlorophyta) from a dimly lit cave in Missouri. J Phycol 25:419–428Google Scholar
  21. Deason TR, Butler GL, Rhyne C (1983) Rhodella reticulate sp. Nov., a new coccoid rhodophytan alga (Porphyridiales). J Phycol 19:104–111Google Scholar
  22. Deininger W, Kröger P, Hegemann U, Lottspeich F, Hegemann P (1995) Chlamyrhodopsin represents a new type of sensory photoreceptor. EMBO J 14:5849–5858PubMedGoogle Scholar
  23. Deininger W, Fuhrmann M, Hegemann P (2000) Opsin evolution: out of wild green yonder? Trends Genet 16:158–159PubMedGoogle Scholar
  24. Derguini F, Mazur P, Nakanishi K, Starace DM, Saranak J, Foster KW (1991) All-trans-retinal is the chromophore bound to the photoreceptor of the alga Chlamydomonas reinhardtii. Photochem Photobiol 54:1017–1021PubMedGoogle Scholar
  25. Deruére J, Römer S, d’Harlingue A, Backhaus RA, Kuntz M, Camara B (1994) Fibril assembly and carotenoid overaccumulation in chromoplasts: a model for supramolecular lipoprotein structures. Plant Cell 6:119–133PubMedGoogle Scholar
  26. Dieckmann CL (2003) Eyespot placement and assembly in the green alga Chlamydomonas. Bioessays 25:410–416PubMedGoogle Scholar
  27. Diehn B, Feinleib M, Haupt W, Hildebrand E, Lenci F, Nultsch W (1977) Terminology of behavioural responses of motile microorganisms. Photochem Photobiol 26:559–560Google Scholar
  28. Dodge JD (1973) The fine structure of algal cells. Academic Press, London, pp 125–138Google Scholar
  29. Dutcher SK, Trebuco EC (1998) The UNI3 gene is required for assembly of basal bodies of Chlamydomonas and encodes δ-Tubulin, a new member of the tubulin superfamily. Mol Biol Cell 9:1293–1308PubMedGoogle Scholar
  30. Ebnet E, Fischer M, Deininger W, Hegemann P (1999) Volvoxrhodopsin, a light regulated sensory photoreceptor of the colonial alga Volvox carteri. Plant Cell 11:1–12Google Scholar
  31. Ehler LL, Holmes JA, Dutcher SK (1995) Loss of spatial control of the mitotic spindle apparatus in a Chlamydomonas reinhardtii mutant strain lacking basal bodies. Genetics 141:945–960PubMedGoogle Scholar
  32. Ermilova EV, Zalutskaya ZM, Huang KY, Beck CF (2004) Phototropin plays a crucial role in controlling changes in chemotaxis during the initial phase of the sexual life cycle in Chlamydomonas. Planta 219:420–427PubMedGoogle Scholar
  33. Ernst OP, Sánchez-Murcia PA, Daldrop P, Tsunoda SP, Kateriya S, Hegemann P (2008) Photoactivation of channelrhodopsin. J Biol Chem 283:1637–1643PubMedGoogle Scholar
  34. Estevez JM, Cantero A, Reindl A, Reichler S, Leon P (2001) 1-Deoxy-D-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. J Biol Chem 276:22901–22909PubMedGoogle Scholar
  35. Feldman JL, Geimer S, Marshall WF (2007) The mother centriole plays an instructive role in defining cell geometry. PLoS Biol 5:e149. doi: 10.1371/journal.pbio.0050149 PubMedGoogle Scholar
  36. Foster KW (2001) Action spectroscopy of photomovement. In: Lebert M, Häder D-P (eds) Comprehensive series in photosciences, vol 1. Elsevier, North Holland, pp 51–115Google Scholar
  37. Foster KW, Smyth RD (1980) Light antennas in phototactic alga. Microbiol Rev 44:572–630PubMedGoogle Scholar
  38. Foster KW, Saranak J, Patel N, Zarilli G, Okabe M, Kline T, Nakanishi K (1984) A rhodopsin is the functional photoreceptor for phototaxis in the unicellular eukaryote Chlamydomonas. Nature 311:756–759PubMedGoogle Scholar
  39. Foster KW, Saranak J, Zarrilli G (1988) Autoregulation of rhodopsin synthesis in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 85:6379–6383PubMedGoogle Scholar
  40. Fuhrmann M, Stahlberg A, Govorunova E, Rank S, Hegemann P (2001) The abundant retinal protein of the Chlamydomonas eye is not the photoreceptor for phototaxis and photophobic responses. J Cell Sci 114:3857–3863PubMedGoogle Scholar
  41. Fuhrmann M, Deininger W, Kateriya S, Hegemann P (2003) Rhodopsin-related proteins, cop1, cop2 and chop1, in Chlamydomonas reinhardtii. In: Batschauer A (ed) Photoreceptors and light signalling. Royal Society of Chemistry, Cambridge, pp 124–135Google Scholar
  42. Gaffal KP, el-Gammal S, Friedrichs GJ (1993) Computer-aided 3D-reconstruction of the eyespot-flagellar/basal apparatus-contractile vacuoles-nucleus-associations during mitosis of Chlamydomonas reinhardtii. Endocyt Cell Res 9:177–220Google Scholar
  43. Gehring WJ (2004) Historical perspective on the development and evolution of eyes and photoreceptors. Int J Dev Biol 48:707–717PubMedGoogle Scholar
  44. Gehring WJ (2005) New perspectives on eye development and the evolution of eyes and photoreceptors. J Hered 96:171–184PubMedGoogle Scholar
  45. Goldstein SF (1992) Flagellar beat patterns in algae. In: Algal cell motility, Melkonian M (ed), Chapman and Hall, New York, London, pp. 99–153Google Scholar
  46. Gosh S, Hudak KA, Dumbroff EB, Thomson JE (1994) Release of photosynthetic protein catabolites by blebbing from thylakoids. Plant Physiol 106:1547–1553Google Scholar
  47. Govorunova EG, Sineshchekov OA (2003) Integration of photo- and chemosensory signalling pathways in Chlamydomonas. Planta 216:535–540PubMedGoogle Scholar
  48. Govorunova EG, Sineshchekov OA (2005) Chemotaxis in the green flagellate alga Chlamydomonas. Biochemistry (Mosc.) 70:717–725Google Scholar
  49. Govorunova EG, Sineshchekov OA, Hegemann P (1997) Desensitization and dark recovery of the photoreceptor current in Chlamydomonas reinhardtii. Plant Physiol 115:633–642PubMedGoogle Scholar
  50. Govorunova EG, Jung KH, Sineshchekov OA, Spudich J (2004) Chlamydomonas sensory Rhodopsins A and B: cellular content and role in photophobic responses. Biophys J 86:2342–2349PubMedGoogle Scholar
  51. Govorunova EG, Voytsekh OO, Sineshchekov OA (2007) Changes in photoreceptor currents and their sensitivity to the chemoeffector tryptone during gamete mating in Chlamydomonas reinhardtii. Planta 225:441–449PubMedGoogle Scholar
  52. Greenwood AD, Leech RM, Williams JP (1963) The osmiophylic globules of chloroplasts. I. Osmiophylic globules as normal component of chloroplasts and their isolation and composition in Vicia faba L. Biochim Biophys Acta 78:148–162Google Scholar
  53. Greuet C (1987) Complex organelles. In: Taylor FJR (ed) The biology of dinoflagellates. Blackwell, Oxford, pp 119–142Google Scholar
  54. Grossman AR, Harris EE, Hauser C, Lefebvre PA, Martinez D, Rokhsar D, Shrager J, Silflow CD, Stern D, Vallon O, Zhang Z (2003) Chlamydomonas reinhardtii at the crossroads of genomics. Eukaryot Cell 2:1137–1150PubMedGoogle Scholar
  55. Grossman A, Lohr M, Im CS (2004) Chlamydomonas reinhardtii in the landscape of pigments. Annu Rev Genet 38:119–173PubMedGoogle Scholar
  56. Grung M, Kreimer G, Calenberg M, Melkonian M, Liaaen-Jensen S (1994) Carotenoids in the eyespot apparatus of the flagellate green alga Spermatozopsis similis: adaptation to the retinal-based photoreceptor. Planta 193:38–43Google Scholar
  57. Gutensohn M, Schulz B, Nicolay P, Flügge UI (2000) Functional analysis of the two Arabidopsis homologues of Toc34, a component of the chloroplast protein import apparatus. Plant J 23:771–783PubMedGoogle Scholar
  58. Gutensohn M, Pahnke S, Kolukisaoglu Ü, Schulz B, Schierhorn A, Voigt A, Hust B, Rollwitz I, Stöckel J, Geimer S, Albrecht V, Flügge UI, Klösgen RB (2004) Characterization of a T-DNA insertion mutant for the protein import receptor atToc33 from chloroplasts. Mol Gen Genomics 272:379–396Google Scholar
  59. Harris E (2001) Chlamydomonas as a model organism. Annu Rev Plant Physiol Plant Mol Biol 52:363–406PubMedGoogle Scholar
  60. Hartshorne JN (1953) The function of the eyespot in Chlamydomonas. New Phytol 52:292–297Google Scholar
  61. Harz H, Nonnengäßer C, Hegemann P (1992) The photoreceptor current of the green alga Chlamydomonas. Philos Trans R Soc London Ser B 338:39–52Google Scholar
  62. Hegemann P (2008) Algal sensory photoreceptors. Annu Rev Plant Biol 59:167–189PubMedGoogle Scholar
  63. Hegemann P, Berthold P (2008) Sensory photoreceptors and light control of flagellar activity. In: Witman GB (ed) The Chlamydomonas sourcebook, vol 3, 2nd edn. Elsevier, Amsterdam, pp 395–429Google Scholar
  64. Hegemann P, Harz H (1998) How microalgae see the light. In: Caddick MX, Baumberg S, Hodgson DA, Phillip-Jones MK (eds) Society for general microbiology symposium, vol 56. Cambridge University Press, London, pp 95–105Google Scholar
  65. Hegemann P, Tsunoda S (2007) Light tools for neuroscience: channelrhodopsin and light activated enzymes. Cell Sci Rev 3:108–123Google Scholar
  66. Hegemann P, Gärtner W, Uhl R (1991) All-trans retinal constitutes the functional chromophore in Chlamydomonas rhodopsin. Biophys J 60:1477–1489PubMedGoogle Scholar
  67. Holmes JA, Dutcher SK (1989) Cellular asymmetry in Chlamydomonas reinhardtii. J Cell Sci 94:273–285PubMedGoogle Scholar
  68. Hoops HJ (1997) Motility in the colonial and multicellular Volvocales: structure, function, and evolution. Protoplasma 199:99–112Google Scholar
  69. Hoops HJ, Witman GB (1985) Basal bodies and associated structures are not required for normal flagellar motion or phototaxis in the green alga Chlorogonium elongatum. J Cell Biol 100:297–309PubMedGoogle Scholar
  70. Hori T, Inouye I, Horiguchi T, Boalch GT (1985) Observations on the motile stage of Halosphera minor Ostenfeld (Prasinophyceae) with special reference to the cell structure. Bot Mar 28:529–537Google Scholar
  71. Hori T, Moestrup Ø, Hoffman LR (1995) Fine structural studies on an ultraplankltonic species of Pyramimonas, P. virginica (Prasinophyceae), with a discussion of subgenera within the genus Pyraminonas. Eur J Phycol 30:219–234Google Scholar
  72. Huang KY, Beck CF (2003) Photoropin is the blue-light receptor that controls multiple steps in the sexual life cycle of the green alga Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 100:6269–6274PubMedGoogle Scholar
  73. Huang KY, Kunkel T, Beck CF (2004) Localization of the blue-light receptor phototropin to the flagella of the green alga Chlamydomonas reinhardtii. Mol Biol Cell 15:3605–3614PubMedGoogle Scholar
  74. Iliev D, Voytsekh O, Mittag M (2006) The circadian system of Chlamydomonas reinhardtii. Biol Rhythms Res 37:323–333Google Scholar
  75. Im CS, Eberhard S, Huang KY, Beck CF, Grossman AR (2006) Phototropin involvement in the expression of genes encoding chlorophyll and carotenoid biosynthesis enzymes and LHC apoproteins in Chlamydomonas reinhardtii. Plant J 48:1–16PubMedGoogle Scholar
  76. Inouye I, Hori T (1991) High-speed video analysis of the flagellar beat and swimming patterns of algae: possible evolutionary trends in green algae. Protoplasma 164:54–69Google Scholar
  77. Inwood W, Yoshihara C, Zalpuri R, Kim K-S, Kustu S (2008) The ultrastructure of a Chlamydomonas reinhardtii mutant strain lacking phytoene synthase resembles that of a colorless alga. Mol Plant 1:925–937PubMedGoogle Scholar
  78. Iomini C, Li L, Mo W, Dutcher SK, Piperno G (2006) Two flagellar genes, AGG2 and AGG3, mediate orientation to light in Chlamydomonas. Curr Biol 16:1147–1153PubMedGoogle Scholar
  79. Isogai N, Kamiya R, Yoshimura K (2000) Dominance between the two flagella during phototactic turning in Chlamydomonas. Zool Sci 17:1261–1266Google Scholar
  80. Johnson CH, Kondo T, Hastings JW (1991) Action spectrum for resetting the circadian phototaxis rhythm in the CW15 strains of Chlamydomonas. II. Illuminated cells. Plant Physiol 97:1122–1129PubMedGoogle Scholar
  81. Jung KH, Trivedi VD, Spudich JL (2003) Demonstration of a sensory rhodopsin in eubacteria. Mol Microbiol 47:1513–1522PubMedGoogle Scholar
  82. Kamiya R, Witman GB (1984) Submicromolar levels of calcium control the balance of beating between the two flagella in demembranated models of Chlamydomonas. J Cell Biol 98:97–107PubMedGoogle Scholar
  83. Kawai H, Kreimer G (2000) Sensory mechanisms: light perception and taxis in algae. In: Leadbeater B, Green J (eds) The flagellates: unity, diversity and evolution. Francis and Taylor, pp 124–146Google Scholar
  84. Keller LC, Romijn EP, Zamora I, Yates III JR, Marshall WF (2005) Proteomic analysis of isolated Chlamydomonas centrioles reveals orthologs of ciliary-disease genes. Curr Biol 15:1090–1098PubMedGoogle Scholar
  85. Kessler F, Vidi P-A (2007) Plastoglobule lipid bodies: their functions in chloroplasts and their potential for applications. Adv Biochem Engin Biotechnol 107:153–172Google Scholar
  86. Kessler F, Schnell D, Blobel G (1999) Identification of proteins associated with plastoglobules isolated from pea (Pisum sativum L.) chloroplasts. Planta 208:107–113PubMedGoogle Scholar
  87. King SJ, Dutcher SK (1997) Phosphoregulation of an inner dynein arm complex in Chlamydomonas reinhardtii is altered in phototactic mutant strains. J Cell Biol 136:177–191PubMedGoogle Scholar
  88. Kondo T, Johnson CH, Hastings JW (1991) Action spectrum for resetting the circadian phototaxis rhythm in the cw 15 strains of Chlamydomonas. I. Cells in darkness. Plant Physiol 95:197–205PubMedGoogle Scholar
  89. Kozminski KG, Diener DR, Rosenbaum JL (1993) High level expression of nonacteylatable α-tubulin in Chlamydomonas reinhardtii. Cell Motil Cytoskelet 25:158–170Google Scholar
  90. Kreimer G (1994) Cell biology of phototaxis in flagellated algae. Int Rev Cytol 148:229–310Google Scholar
  91. Kreimer G (1999) Reflective properties of different eyespot types in dinoflagellates. Protist 150:311–323PubMedGoogle Scholar
  92. Kreimer G (2001) Light reception and signal modulation during photoorientation of flagellate algae. In: Lebert M, Häder D-P (eds) Comprehensive series in photosciences, vol 1. Elsevier, North Holland, pp 193–227Google Scholar
  93. Kreimer G, Melkonian M (1990) Reflection confocal laser scanning microscopy of eyespots in flagellate green alga. Eur J Cell Biol 53:101–111PubMedGoogle Scholar
  94. Kreimer G, Brohsonn U, Melkonian M (1991a) Isolation and partial characterization of the photoreceptive organelle for phototaxis of a flagellate green alga. Eur J Cell Biol 55:318–327PubMedGoogle Scholar
  95. Kreimer G, Kawai H, Müller DG, Melkonian M (1991b) Reflective properties of the stigma in male gametes of Ectocarpus siliculosus (Phaeophyceae) studied by confocal laser scanning microscopy. J Phycol 27:268–276Google Scholar
  96. Kreimer G, Marner F-J, Brohsonn U, Melkonian M (1991c) Identification of 11-cis- and all-trans-retinal in the photoreceptive organelle of a flagellate green alga. FEBS-Lett 293:49–52PubMedGoogle Scholar
  97. Kreimer G, Overländer C, Sineshchekov OA, Stolzis H, Nultsch W, Melkonian M (1992) Functional analysis of the eyespot in Chlamydomonas reinhardtii mutant ey 627, mt-. Planta 188:513–521Google Scholar
  98. Krochko JE, Bewley JD, Pacey J (1978) The effects of rapid and very slow speeds of drying on the ultrastructure and metabolism of the desiccation-sensitive moss Cratoneuron filicinum (Hedw.) Spruce. J Exp Botany 29:905–917Google Scholar
  99. Lagali PS, Balyal D, Awatramani GB, Münch TA, Kim DS, Busskamp V, Cepko CL, Roska B (2008) Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat Neurosci 11:667–675PubMedGoogle Scholar
  100. Lamb MR, Dutcher SK, Worley CK, Dieckmann CL (1999) Eyespot assembly mutants in Chlamydomonas reinhardtii. Genetics 153:721–729PubMedGoogle Scholar
  101. Lawson MA, Satir P (1994) Characterization of the eyespot regions of “blind” Chlamydomonas mutants after restoration of photophobic responses. J Euk Microbiol 41:593–601PubMedGoogle Scholar
  102. Lawson MA, Zacks DN, Derguini F, Nakanishi K, Spudich JL (1991) Retinal analog restoration of a blind Chlamydomonas mutant: evidence for an archaebacterial chromophore in a eukaryotic rhodopsin. Biophy J 60:1490–1498CrossRefGoogle Scholar
  103. Lechtreck K-F, Reize IB, Melkonian M (1997) The cytoskeleton of the naked green flagellate Spermatozopsis similis (Chlorophyta): flagellar and basal body developmental cycle. J Phycol 33:254–265Google Scholar
  104. Lichtenthaler HK (1968) Plastoglobuli and the fine structure of plastids. Endeavour 27:144–148Google Scholar
  105. Linden L, Kreimer G (1995) Calcium modulates rapid protein phosphorylation/dephosphorylation in isolated eyespot apparatuses of the green alga Spermatozopsis similis. Planta 197:343–351Google Scholar
  106. Lohr M, Im C-S, Grossman AR (2005) Genome-based examination of chlorophyll and carotenoid biosynthesis in Chlamydomonas reinhardtii. Plant Physiol 138:490–515PubMedGoogle Scholar
  107. Maeda T, Imanishi Y, Palczewski K (2003) Rhodopsin phosphorylation: 30 years later. Prog Retin Eye Res 22:417–434PubMedGoogle Scholar
  108. Matsunaga S, Watanabe S, Sakaushi S, Miyamura S, Hori T (2003) Screening effect diverts the swimming directions from diaphototactic to positive phototactic in a disk-shaped green flagellate Mesostigma viride. Photochem Photobiol 77:324–332PubMedGoogle Scholar
  109. Melkonian M (1981) Fate of eyespot lipid globules after zoospore settlement in the green alga Pleuastrum terrestre Fritsch et John. Br Phycol J 16:245–255Google Scholar
  110. Melkonian M, Robenek H (1980a) Eyespot membranes in newly released zoospores of the green alga Chlorosarcinopsis gelantinosa (Chlorosarcinales) and their fate during zoospore settlement. Protoplasma 104:129–140Google Scholar
  111. Melkonian M, Robenek H (1980b) Eyespot membranes of Chlamydomonas reinhardii––a freeze-fracture study. J Ultrastruct Res 72:90–102PubMedGoogle Scholar
  112. Melkonian M, Robenek H (1984) The eyespot apparatus of flagellated green alga: a critical review. Prog Phycol Res 3:193–268Google Scholar
  113. Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Maréchal-Drouard L et al (2007) The evolution of key animal and plant functions is revealed by analysis of the Chlamydomonas genome. Science 318:245–251PubMedGoogle Scholar
  114. Mergenhagen D (1984) Circadian clock: genetic characterization of a short period mutant of Chlamydomonas reinhardtii. Eur J Cell Biol 33:13–18PubMedGoogle Scholar
  115. Misumi O, Yoshida Y, Nishida K, Fujiwara T, Sakajiri T, Hirooka S, Nishimura Y, Kuroiwa T (2008) Genome analysis and its significance in four unicellular algae, Cyanidioshyzon merole, Ostreococcus tauri, Chlamydomonas reinhardtii, and Thalassiosira pseudonana. J Plant Res 121:3–17PubMedGoogle Scholar
  116. Mittag M, Kiaulehn S, Johnson CH (2005) The circadian clock in Chlamydomonas reinhardtii. What is it for? What is it similar to? Plant Physiol 137:399–409PubMedGoogle Scholar
  117. Mittelmeier T, Berthold P, Danon A, Lamb MR, Levitan A, Rice ME, Dieckmann CL (2008) The C2 domain protein MIN1 promotes eyespot organization in Chlamydomonas. Eukaryot Cell 7:2100–2112PubMedGoogle Scholar
  118. Miyaji K (1996) Taxonomic study of the genus Spongomorpha (Acrosiphonales, Chlorophyta) in Japan. I. Spongomorpha spiralis. Phycol Res 44:27–36Google Scholar
  119. Miyamura S, Hori T, Nagumo T (2003) Eyespot behaviour during the fertilization of gametes in Ulva arasakii Chihara (Ulvophyceae, Chlorophyta). Phycol Res 51:143–146Google Scholar
  120. Moestrup Ø, Ettl H (1979) A light and electron microscopical study of Nephroselmis olivacea (Prasinophyceae). Opera Bot 49:1–39Google Scholar
  121. Moestrup Ø, Hoffman LR (1973) Ultrastructure of the green alga Dichotomosiphon tuberosus with special reference to the occurrence of striated tubules in the chloroplast. J Phycol 9:430–437Google Scholar
  122. Morel-Laurens N (1987) Calcium control of phototactic orientation in Chlamydomonas reinhardtii: sign and strength of response. Photochem Photobiol 45:119–128PubMedGoogle Scholar
  123. Morel-Laurens N, Feinleib ME (1983) Photomovement in an “eyeless” mutant of Chlamydomonas. Photochem Photobiol 37:189–194Google Scholar
  124. Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM, Bamberg E, Hegemann P (2002) Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296:2395–2398PubMedGoogle Scholar
  125. Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci USA 100:13940–13945PubMedGoogle Scholar
  126. Nakamura S, Ogihara H, Jinbo K, Tateishi M, Takahashi T, Yoshimura K, Kubota M, Watanabe M, Nakamura S (2001) Chlamydomonas reinhardtii Dangeard (Chlamydomonadales, Chlorophyceae) mutant with multiple eyespots. Phycol Res 49:115–121Google Scholar
  127. Nakayama T, Inouye I (2000) Ultrastructure of the biflagellate gametes of Collinsiella cava (Ulvophyceae, Chlorophyta). Phycol Res 48:63–73Google Scholar
  128. Nelson JAE, Lefebvre PA (1995) Targeted disruption of the NIT8 gene in Chlamydomonas reinhardtii. Mol Cell Biol 15:5762–5769PubMedGoogle Scholar
  129. Ohad I, Goldberg I, Broza R, Schuldiner S, Gan-Zvi E (1969) Changes in lipid and pigment composition and photosynthetic activity during formation of chloroplast lamellae in a mutant of Chlamydomonas reinhardtii y-1. In: Metzner H (ed) Progress in photosynthesis research, vol 1. International Union of Biological Sciences, Tübingen, pp 284–295Google Scholar
  130. Okamoto OK, Hastings JW (2003) Novel dinoflagellate clock-related genes identified through microarray analysis. J Phycol 39:519–526Google Scholar
  131. Okamoto N, Inouye I (2005) A secondary symbiosis in progress? Science 310:287PubMedGoogle Scholar
  132. Okamoto N, Inouye I (2006) Hatena arenicola gen. et sp. nov., a katablepharid undergoing probable plastid acquisition. Protist 157:401–419PubMedGoogle Scholar
  133. Okita N, Isogai N, Hirono M, Kamiya R, Yoshimura K (2005) Phototactic activity in Chlamydomonas ‘nonphototactic’ mutants deficient in Ca2+-dependent control of flagellar dominance or in inner-arm dynein. J Cell Sci 118:529–537PubMedGoogle Scholar
  134. Ozawa S, Nield J, Terao A, Stauber EJ, Hippler M, Koike H, Rochaix J-D, Takahashi Y (2008) Biochemical and structural studies of the large Ycf4-Photosystem I assembly complex of the green alga Chlamydomonas reinhardtii. submittedGoogle Scholar
  135. Palczewski K, Saari JC (1997) Activation and inactivation steps in the visual transduction pathway. Curr Opin Neurobiol 7:500–504PubMedGoogle Scholar
  136. Panda S, Hogenesch JB, Kay SA (2002) Circadian rhythms from flies to human. Nature 417:329–335PubMedGoogle Scholar
  137. Patrone LM, Broadwater ST, Scott JL (1991) Ultrastructure of vegetative and dividing cells of the unicellular red alga Rhodella violacea and Rhodella maculate. J Phycol 27:742–753Google Scholar
  138. Pazour GJ, Sineshchekov OA, Witman GB (1995) Mutational analysis of the phototransduction pathway of Chlamydomonas reinhardtii. J Cell Biol 131:427–440PubMedGoogle Scholar
  139. Pazour GJ, Agrin N, Leszyk J, Witman GB (2005) Proteomic analysis of a eukaryotic cilium. J Cell Biol 170:103–113PubMedGoogle Scholar
  140. Pozueta-Romero J, Rafia F, Houlné G, Cheniclet C, Carde J-P, Schantz M-L, Schantz R (1997) A ubiquitous plant housekeeping gene, PAP, encodes a major protein component of bell pepper chromoplasts. Plant Physiol. 115:1185–1194PubMedGoogle Scholar
  141. Pueschel CM, Cole KM (1985) Ultrastructure of germinating carpospores of Porphyra variegate (Kjellm.) Hus (Bangiales; Rhodophyta). J Phycol 21:146–154Google Scholar
  142. Pueschel CM, Miller TJ (1996) Reconsidering prey specializations in an algal-limpet grazing mutualism: ephithallial cell development in Clathromorphum circumscriptum (Rhodophyta, Corallinales). J Phycol 32:28–36Google Scholar
  143. Renninger S (2004) Augenfleckglobuli aus Spermatozopsis similis (Chlorophyceae): Isolierung und vergleichende Charakterisierung zu Plastoglobuli Höherer Pflanzen. PhD Thesis, Universität Erlangen-Nürnberg, GermanyGoogle Scholar
  144. Renninger S, Backendorf E, Kreimer G (2001) Subfractionation of eyespot apparatuses from the green alga Spermatozopsis similis: isolation and characterization of eyespot globules. Planta 213:51–63PubMedGoogle Scholar
  145. Renninger S, Dieckmann CL, Kreimer G (2006) Towards a protein map of the green algal eyespot: analysis of eyespot globule-associated proteins. Phycologia 45:199–212Google Scholar
  146. Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935–941PubMedGoogle Scholar
  147. Rey P, Gillet B, Römer S, Eymery F, Massimino J, Peltier G, Kuntz M (2000) Over-expression of a pepper plastid-lipid-associated protein in tobacco leads to changes in plastid-ultrastructure and plant development upon stress. Plant Journal 21:483–494PubMedGoogle Scholar
  148. Richardson FL, Brown TE (1970) Glaucospharea vacuolata, its ultrastructure and physiology. J Phycol 6:165–171Google Scholar
  149. Ritter E, Stehfest K, Berndt A, Hegemann P, Bartl FJ (2008) Monitoring light induced structural changes of Channelrhodopsin-2 by UV/Vis and FTIR spectroscopy. J Biol Chem, under revisionGoogle Scholar
  150. Roberts DGW, Lamb MR, Dieckmann CL (2001) Characterization of the eye2 gene required for eyespot assembly in Chlamydomonas reinhardtii. Genetics 158:1037–1049PubMedGoogle Scholar
  151. Rodriguez-Ezpeleta N, Philippe H, Brinkmann H, Becker B, Melkonian M (2007) Phylogenetic analyses of nuclear, mitochondrial, and plastid multigene data sets support the placement of Mesostigma in the Streptophyta. Mol Biol Evol 24:723–731PubMedGoogle Scholar
  152. Ruch S, Beyer P, Ernst HG, Al-Babili S (2005) Retinal biosynthesis in Eubacteria: in vitro characterization of a novel carotenoid oxygenase from Synechocystis sp. PCC 6803. Mol Microbiol 55:1015–1024PubMedGoogle Scholar
  153. Rüffer U, Nultsch W (1985) High-speed cinematographic analysis of the movement of Chlamydomonas. Cell Motil Cytoskeleton 5:251–263Google Scholar
  154. Rüffer U, Nultsch W (1991) Flagellar photoresponses of Chlamydomonas cells held on micropipettes: II. Change in flagellar beat pattern. Cell Motil Cytoskeleton 18:269–278Google Scholar
  155. Ruiz-González MX, Marin I (2004) New insights into the evolutionary history of type 1 rhodopsins. J Mol Evol 58:348–358PubMedGoogle Scholar
  156. Sakaguchi H, Iwasa K (1979) Two photophobic responses in Volvox carteri. Plant Cell Physiol 20:909–916Google Scholar
  157. Santos LMA, Melkonian M, Kreimer G (1996) A combined reflection confocal laser scanning, electron and fluorescence microscopy analysis of the eyespot in zoospores of Vischeria spp. (Eustigmatales, Eustigmatophyceae). Phycologia 35:299–307Google Scholar
  158. Satoh M, Hori T, Tsujimoto K, Sasa T (1995) Isolation of eyespots of green algae and analyses of pigments. Bot Marina 38:467–474CrossRefGoogle Scholar
  159. Sattler SE, Cahoon EB, Cougghlan SJ, DellaPenna D (2003) Characterization of tocopherol cyclises from higher plants and cyanobacteria. Evolutionary implications for tocopherol synthesis and function. Plant Physiol 132:2184–2195PubMedGoogle Scholar
  160. Schaller K, Uhl R (1997) A microspectrophotometric study of the shielding properties of eyespot and cell body in Chlamydomonas. Biophys J 73:1573–1578PubMedGoogle Scholar
  161. Schlicher U, Linden L, Calenberg M, Kreimer G (1995) G proteins and Ca2+-modulated protein kinases of a plasma membrane-enriched fraction and isolated eyespot apparatuses of Spermatozopsis similis (Chlorophyceae). Eur J Phycol 30:319–330Google Scholar
  162. Schmid AM (2003) Endobacteria in the diatom Pinnularia (Bacilariophyceae). I. “Scattered ct-nucleoids” explained: DAPI-DNA complexes stem from exoplastidial bacteria boring into the chloroplast. J Phycol 39:122–138Google Scholar
  163. Schmidt M, Gessner G, Luff M, Heiland I, Wagner V, Kaminski M, Geimer S, Eitzinger N, Reißenweber T, Voytsekh O, Fiedler M, Mittag M, Kreimer G (2006) Proteomic analysis of the eyespot of Chlamydomonas reinhardtii provides novel insights into its components and tactic movements. Plant Cell 18:1908–1930PubMedGoogle Scholar
  164. Schmidt M, Luff M, Mollwo A, Kaminski M, Mittag M, Kreimer G (2007) Evidence for a specialized localization of the chloroplast ATP-synthase subunits α, β and γ in the eyespot apparatus of Chlamydomonas reinhardtii (Chlorophyceae). J Phycology 43:284–294Google Scholar
  165. Schroda M (2006) RNA silencing in Chlamydomonas: mechanisms and tools. Curr Genet 49:69–84PubMedGoogle Scholar
  166. Scott JL, Broadwater ST, Saunders BD, Thomas JP (1992) Ultrastructure of vegetative organization and cell division in the unicellular red alga Dixoniella grisea gen. nov. (Rhodophyta) and a consideration of the genus Rhodella. J Phycol 28:649–660Google Scholar
  167. Simkin AJ, Gaffé J, Alcaraz J-P, Carde J-P, Bramley PM, Fraser PD, Kuntz M (2007) Fibrillin influence on plastid ultrastructure and pigment content in tomato fruit. Phytochemistry 68:1545–1556PubMedGoogle Scholar
  168. Sineshchekov OA, Govorunova EA (2001) Electrical events in photomovement of green flagellated algae. In: Lebert M, Häder D-P (eds) Comprehensive series in photosciences, vol 1. Elsevier, Amsterdam, pp 245–280Google Scholar
  169. Sineshchekov OA, Jung K-H, Spudich JL (2002) Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 99:8689–8694PubMedGoogle Scholar
  170. Sineshchekov OA, Govorunova EG, Jung K-H, Zauner S, Maier U-G, Spudich JL (2005) Rhodopsin-mediated photoreception in cryptophyte flagellates. Biophys J 89:4310–4319PubMedGoogle Scholar
  171. Sitte P (1963) Hexagonale Anordnung der Globuli in Moos-Chloroplasten. Protoplasma 56:197–201Google Scholar
  172. Suda S (2003) Light microscopy and electron microscopy of Nephroselmis spinosa sp nov (Prasinophyceae, Chlorophyta). J Phycol 39:590–599Google Scholar
  173. Suzuki T, Yamasaki K, Fujita S, Oda K, Iseki M, Yoshida K, Watanabe M, Daiyasu H, Toh H, Asamizu E, Tabata S, Miura K, Fukuzawa H, Nakamura S, Takahashi T (2003) Archaeal-type rhodopsins in Chlamydomonas: model structure and intracellular localization. Biochem Biophys Res Commun 301:711–717PubMedGoogle Scholar
  174. Sym SD, Pienaar RN (1993) The class Prasinophyceae. Prog Phycol Res 9:281–376Google Scholar
  175. Takahashi T, Watanabe M (1993) Photosynthesis modulates the sign of phototaxis of wild-type Chlamydomonas reinhardtii. FEBS Lett 336:516–520PubMedGoogle Scholar
  176. Thomson W, Platt K (1973) Plastid ultrastructure in the barrel cactus, Echinocactus acanthodes. New Phytol 72:791–797Google Scholar
  177. Uniacke J, Zerges W (2007) Photosystem II assembly and repair are differentially localized in Chlamydomonas. Plant Cell 19:3640–3654PubMedGoogle Scholar
  178. Valentine LJ, Campbell EO, Hopcroft DH (1986) A study of chloroplast structure in 3 Megaceros species and 3 Dendroceros species (Anthocerotae) indigenous to New Zealand. New Zealand J Bot 24:1–8Google Scholar
  179. van de Meene AML, Hohmann-Marriott MF, Vermaas WFJ, Roberson RW (2006) The three-dimensional structure of the cyanobacterium Synechocystis sp. PCC 6803. Arch Microbiol 184:259–270PubMedGoogle Scholar
  180. Vidi P-A, Kanwischer M, Baginsky S, Austin JR, Csucs G, Dörmann P, Kessler F, Bréhelin C (2006) Tocopherol cyclase (VTE1) localization and vitamin E accumulation in chloroplast Plastoglobule lipoprotein particles. J Biol Chem 281:11225–11234PubMedGoogle Scholar
  181. Wagner V, Ullmann K, Mollwo A, Kaminski M, Mittag M, Kreimer G (2008a) The phosphoproteome of a Chlamydomonas reinhardtii eyespot fraction includes key proteins of the light signaling pathway. Plant Physiol 146:772–788PubMedGoogle Scholar
  182. Wagner V, Kreimer G, Mittag M (2008b) The power of functional proteomics: components of the green algal eyespot and its light signaling pathway(s). Plant Sign Behav 3:1–3Google Scholar
  183. Walne PL (1966) The effects of cochicine on cellular organization in Chlamydomonas. I. Light microscopy and cytochemistry. Amer J Bot 53:908–916Google Scholar
  184. Walne PL, Arnott HJ (1967) The comparative ultrastructure and possible function of eyespots: Euglena granulata and Chlamydomonas eugametos. Planta 77:325–353Google Scholar
  185. Wheeler GL, Joint I, Brownlee C (2008) Rapid spatiotemporal pattering of cytosolic Ca2+ underlies flagellar excision in Chlamydomonas reinhardtii. Plant J 53:401–413PubMedGoogle Scholar
  186. Witman GB (1993) Chlamydomonas phototaxis. Trends Cell Biol 3:403–408PubMedGoogle Scholar
  187. Yang P, Sale WS (2000) Casein kinase I is anchored on axonemal doublet microtubules and regulates flagellar dynein phosphorylation and activity. J Biol Chem 275:18905–18912PubMedGoogle Scholar
  188. Yoshimura K (1994) Chromophore orientation in the photoreceptor of Chlamydomonas as probed by stimulation with polarised light. Photochem Photobiol 60:594–597Google Scholar
  189. Yoshimura K, Kamiya R (2001) The sensitivity of Chlamydomonas photoreceptor is optimized for the frequency of cell body rotation. Plant Cell Physiol 42:665–672PubMedGoogle Scholar
  190. Ytterberg AJ, Peltier J-B, van Wijk KJ (2006) Protein profiling of plastoglobules in chloroplasts and chromoplasts: a surprising site for differential accumulation of metabolic enzymes. Plant Physiol 140:984–997PubMedGoogle Scholar
  191. Zacks DN, Derguini F, Nakanishi K, Spudich JL (1993) Comparative study of phototactic and photophobic receptor chromophore properties in Chlamydomonas reinhardtii. Biophys J 65:508–518PubMedGoogle Scholar
  192. Zak E, Norling B, Maitra R, Huang F, Andersson B, Pakrasi HB (2001) The initial steps of biogenesis of cyanobacterial photosystems occur in plasma membranes. Proc Natl Acad Sci USA 98:13443–13448PubMedGoogle Scholar
  193. Zorin B, Hegemann P, Sizova I (2005) Nuclear gene targeting by using single-stranded DNA avoids illegitimate DNA integration in Chlamydomonas reinhardtii. Eukaryot Cell 4:1264–1272PubMedGoogle Scholar
  194. Zuo B-Y, Zhang O, Jiang G-Z, Chen C-J (2004) The response of ultrastructure and function of chloroplasts from Cycas to doubled CO2 concentration. Bot Rev 70:72–78Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department BiologieFriedrich-Alexander Universität ErlangenErlangenGermany

Personalised recommendations