Current Genetics

, Volume 55, Issue 1, pp 45–57 | Cite as

The Pleurotus ostreatus laccase multi-gene family: isolation and heterologous expression of new family members

  • Cinzia Pezzella
  • Flavia Autore
  • Paola Giardina
  • Alessandra Piscitelli
  • Giovanni Sannia
  • Vincenza FaracoEmail author
Research Article


This work was aimed at identifying and at characterizing new Pleurotus ostreatus laccases, in order to individuate the most suitable biocatalysts for specific applications. The existence of a laccase gene clustering was demonstrated in this basidiomycete fungus, and three new laccase genes were cloned, taking advantage of their closely related spatial organization on the fungus genome. cDNAs coding for two of the new laccases were isolated and expressed in the yeasts Saccharomyces cerevisiae and Kluyveromyces lactis, in order to optimize their production and to characterize the recombinant proteins. Analysis of the P. ostreatus laccase gene family allowed the identification of a “laccase subfamily” consisting of three genes. A peculiar intron–exon structure was revealed for the gene of one of the new laccases, along with a high instability of the recombinant enzyme due to lability of its copper ligand. This study allowed enlarging the assortment of P. ostreatus laccases and increasing knowledge to improve laccase production.


Laccase gene Fungus Recombinant heterologous expression Copper lability Promoter Phylogenetic analysis 



This work was supported by the European Commission, Sixth Framework Program (SOPHIED contract NMP2-CT2004-505899), by grants from the Ministero dell’Università e della Ricerca Scientifica (Progetti di Rilevante Interesse Nazionale, PRIN), and from the Ministero Degli Affari Esteri di Intesa con il Ministero dell’Università e della Ricerca (Progetti di ricerca di base e tecnologica approvati nei protocolli di cooperazione scientifica e tecnologica bilaterale come previsto dal protocollo bilaterale tra Italia e Turchia). Stage of Vincenza Faraco at Department of Agrarian Production, Public University of Navarre was funded by University of Naples Federico II (Programma di scambi internazionali tra l’Università degli Studi di Napoli Federico II ed Istituti di ricerca stranieri per la mobilità di breve durata di docenti, studiosi e ricercatori). The authors thank Prof Ramírez of Department of Agrarian Production, Public University of Navarre for kindly making available the BAC (bacterial artificial chromosome) library of the Pleurotus ostreatus genome.


  1. Arst HN Jr, MacDonald DW (1975) A gene cluster in Aspergillus nidulans with an internally located cis-acting regulatory region. Nature 254:26–31PubMedCrossRefGoogle Scholar
  2. Baldrian P, Gabriel J (2002) Copper and cadmium increase laccase activity in Pleurotus ostreatus. FEMS Microbiol Lett 206:69–74PubMedCrossRefGoogle Scholar
  3. Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56CrossRefGoogle Scholar
  4. Bertrand T, Jolivalt C, Briozzo P, Caminade E, Joly N, Madzak C, Mougin C (2002) Crystal structure of a four-copper laccase complexed with an arylamine: insights into substrate recognition and correlation with kinetics. Biochemistry 41:7325–7333PubMedCrossRefGoogle Scholar
  5. Bollag JM, Leonowicz A (1984) Comparative studies of extracellular fungal laccases. Appl Environ Microbiol 48:849–854PubMedGoogle Scholar
  6. Chen DM, Bastias BA, Taylor AFS, Cairney JWG (2003) Identification of laccase-like genes in ectomycorrhizal basidiomycetes and transcriptional regulation by nitrogen in Piloderma byssinum. New Phytol 157:547–554CrossRefGoogle Scholar
  7. D’Souza TM, Boominathan K, Adinarayana CR (1996) Isolation of laccase gene-specific sequences from white rot and brown rot fungi by PCR. Appl Environ Microbiol 62:3739–3744PubMedGoogle Scholar
  8. Diamantidis G, Effosse A, Potier P, Bally R (2000) Purification and characterization of the first bacterial laccase in the rhizospheric bacterium Azospirillum lipoferum. Soil Biol Biochem 32:919–927CrossRefGoogle Scholar
  9. Ducros V, Brzozowski AM, Wilson KS, Ostergaard P, Schneider P, Svendson A, Davies GJ (2001) Structure of the laccase from Coprinus cinereus at 1.68-A resolution: evidence for different ‘type 2 Cu-depleted’ isoforms. Acta Crystallogr D Biol Crystallogr 57:333–336PubMedCrossRefGoogle Scholar
  10. Enguita FJ, Martins LO, Henriques AO, Carrondo MA (2003) Crystal structure of a bacterial endospore coat component. A laccase with enhanced thermostability properties. J Biol Chem 278:19416–19425PubMedCrossRefGoogle Scholar
  11. Faraco V, Giardina P, Sannia G (2003) Metal-responsive elements in Pleurotus ostreatus laccase gene promoters. Microbiology 149:2155–2162PubMedCrossRefGoogle Scholar
  12. Faraco V, Ercole C, Festa G, Giardina P, Piscitelli A, Sannia G (2008a) Heterologous expression of heterodimeric laccases from Pleurotus ostreatus in Kluyveromyces lactis. Appl Microbiol Biotechnol 77:1329–1335PubMedCrossRefGoogle Scholar
  13. Faraco V, Pezzella C, Miele A, Giardina P, Sannia G (2008b) Bio-remediation of colored industrial wastewaters by the white-rot fungi Phanerochaete chrysosporium and Pleurotus ostreatus and their enzymes. Biodegradation (in press) doi:  10.1007/s10532-008-9214-2
  14. Faraco V, Pezzella C, Giardina P, Piscitelli A, Vanhulle S, Sannia G (2008c) Decolourization of textile dyes by the white-rot fungi Phanerochaete chrysosporium and Pleurotus ostreatus. J Chem Technol Biotechnol (in press)Google Scholar
  15. Galhaup C, Goller S, Peterbauer CK, Strauss J, Haltrich D (2002) Characterization of the major laccase isoenzyme from Trametes pubescens and regulation of its synthesis by metal ions. Microbiology 148:2159–2169PubMedGoogle Scholar
  16. Garavaglia S, Cambria MT, Miglio M, Ragusa S, Iacobazzi V, Palmieri F, D’Ambrosio C, Scaloni A, Rizzi M (2004) The structure of Rigidoporus lignosus laccase containing a full complement of copper ions reveals an asymmetrical arrangement for the T3 copper pair. J Mol Biol 342:1519–1531PubMedCrossRefGoogle Scholar
  17. Giardina P, Cannio R, Martirani L, Marzullo L, Palmieri G, Sannia G (1995) Cloning and sequencing of a laccase gene from the lignin-degrading basidiomycete Pleurotus ostreatus. Appl Environ Microbiol 61:2408–2413PubMedGoogle Scholar
  18. Giardina P, Aurilia V, Cannio R, Marzullo L, Amoresano A, Siciliano R, Pucci P, Sannia G (1996) The gene, protein and glycan structures of laccase from Pleurotus ostreatus. Eur J Biochem 235:508–515PubMedCrossRefGoogle Scholar
  19. Giardina P, Palmieri G, Scaloni A, Fontanella B, Faraco V, Cennamo G, Sannia G (1999) Protein and gene structure of a blue laccase from Pleurotus ostreatus. Biochem J 341:655–663PubMedCrossRefGoogle Scholar
  20. Giardina P, Autore F, Faraco V, Festa G, Palmieri G, Piscitelli A, Sannia G (2007) Structural characterization of heterodimeric laccases from Pleurotus ostreatus. Appl Microbiol Biotechnol 75:1293–1300PubMedCrossRefGoogle Scholar
  21. Gietz D, St Jean A, Woods RA, Schiestl RH (1992) Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 2:1425CrossRefGoogle Scholar
  22. Gurr SJ, Unkles SE, Kinghorn JR (1987) The structure and organization of nuclear genes of filamentous fungi. In: Kinghorn JR (ed) Gene structures in eukaryotic microbes. IRL Press, Oxford, pp 93–139Google Scholar
  23. Hakulinen N, Kiiskinen LL, Kruus K, Saloheimo M, Paananen A, Koivula A, Rouvinen J (2002) Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site. Nat Struct Biol 9:601–605PubMedGoogle Scholar
  24. Hakulinen N, Andberg M, Kallio J, Koivula A, Kruus K, Rouvinen J (2008) A near atomic resolution structure of a Melanocarpus albomyces laccase. J Struct Biol 162:29–39PubMedCrossRefGoogle Scholar
  25. Hatakka A (1994) Lignin-modifying enzymes from selected white-rot fungi, production and role in lignin degradation. FEMS Microbiol Lett 13:125–135CrossRefGoogle Scholar
  26. Hoegger PJ, Kilaru S, James TY, Thacker JR, Kües U (2006) Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. FEBS J 273:2308–2326PubMedCrossRefGoogle Scholar
  27. Hoshida H, Nakao M, Kanazawa H, Kubo K, Hakukawa T, Morimasa K, Akada R, Nishizawa Y (2001) Isolation of five laccase gene sequences from the white-rot fungus Trametes sanguinea by PCR, and cloning, characterization and expression of the laccase cDNA in yeasts. J Biosci Bioeng 92:372–380PubMedCrossRefGoogle Scholar
  28. Hullo MF, Moszer I, Danchin A, Martin-Verstraete I (2001) CotA of Bacillus subtilis is a copper-dependent enzyme. J Bacteriol 183:5426–5430PubMedCrossRefGoogle Scholar
  29. Jarai G, Truong HN, Daniel-Vedele F, Marzluf GA (1992) NIT2, the nitrogen regulatory protein of Neurospora crassa, binds upstream of nia, the tomato nitrate reductase gene, in vitro. Curr Genet 21:37–41PubMedCrossRefGoogle Scholar
  30. Kellner H, Luis P, Buscot F (2007) Diversity of laccase-like multicopper oxidase (LMCO) genes in Morchellaceae: identification of genes potentially involved in extracellular activities related to plant litter decay. FEMS Microbiol Ecol 61:153–163PubMedCrossRefGoogle Scholar
  31. Kilaru S, Hoegger PJ, Kües U (2006) The laccase multi-gene family in Coprinopsis cinerea has seventeen different members that divide into two distinct subfamilies. Curr Genet 50:45–60PubMedCrossRefGoogle Scholar
  32. Koroleva OV, Stepanova EV, Binukov VI, Timofeev VP, Pfeil W (2001) Temperature-induced changes in copper centers and protein conformation of two fungal laccases from Coriolus hirsutus and Coriolus zonatus. Biochim Biophys Acta 1547:397–407PubMedGoogle Scholar
  33. Kumar SVS, Phale PS, Durani S, Wangikar PP (2003) Combined sequence and structure analysis of the fungal laccase family. Biotechnol Bioeng 83:386–394PubMedCrossRefGoogle Scholar
  34. Larraya LM, Perez G, Ritter E, Pisabarro AG, Ramírez L (2000) Genetic linkage map of the edible basidiomycete Pleurotus ostreatus. Appl Environ Microbiol l66:5290–5300CrossRefGoogle Scholar
  35. Larrondo LF, Salas L, Melo F, Vicuna R, Cullen D (2003a) A novel extracellular multicopper oxidase from Phanerochaete chrysosporium with ferroxidase activity. Applied Environ Microbiol 69:6257–6263CrossRefGoogle Scholar
  36. Larrondo LF, Avila M, Salas L, Cullen D, Vicuna R (2003b) Heterologous expression of laccase cDNA from Ceriporiopsis subvermispora yields copper activated apoprotein and complex isoform patterns. Microbiology 149:1177–1182PubMedCrossRefGoogle Scholar
  37. Larrondo LF, Gonzalez B, Cullen D, Vicuna R (2004) Characterization of a multicopper oxidase gene cluster in Phanerochaete chrysosporium and evidence of altered splicing of the mco transcripts. Microbiology 150:2775–2783PubMedCrossRefGoogle Scholar
  38. Li X, Wei Z, Zhang M, Peng X, Yu G, Teng M, Gong W (2007) Crystal structures of E. coli laccase CueO at different copper concentrations. Biochem Biophys Res Comm 354:21–26PubMedCrossRefGoogle Scholar
  39. Mager WH, De Kruijff AJ (1995) Stress-induced transcriptional activation. Microbiol Rev 59:506–531PubMedGoogle Scholar
  40. Mansur M, Suarez T, Fernandez-Larrea JB, Brizuela MA, Gonzalez AE (1997) Identification of a laccase gene family in the new lignin-degrading basiodiomycete CECT 20197. Appl Environ Microbiol 63:2637–2646PubMedGoogle Scholar
  41. Mansur M, Suarez T, Gonzalez AE (1998) Differential gene expression in the laccase gene family from basidiomycete I-62 (CECT 20197). Appl Environ Microbiol 64:771–774PubMedGoogle Scholar
  42. Marti-Renom MA, Stuart A, Fiser A, Sánchez R, Melo F, Sali A (2000) Comparative protein structure modelling of genes and genomes. Annu Rev Biophys Biomol Struct 29:291–325PubMedCrossRefGoogle Scholar
  43. Mayer AM (1987) Polyphenol oxidases in plants—recent progress. Phytochemistry 26:11–20CrossRefGoogle Scholar
  44. Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochemistry 60:551–565PubMedCrossRefGoogle Scholar
  45. Mazzoni C, Saliola M, Falcone C (1992) Ethanol-induced and glucose-insensitive alcohol dehydrogenase activity in the yeast Kluyveromyces lactis. Mol Microbiol 6:2279–2286PubMedCrossRefGoogle Scholar
  46. Nielsen H, Engelbrecht J, Brunak S, von Heijne G (1997) A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Int J Neural Syst 8:581–599PubMedCrossRefGoogle Scholar
  47. Padgett RA, Konarska MM, Grabowski PJ, Hardy SF, Sharp PA (1984) Lariat RNA’s as intermediates and products in the splicing of messenger RNA precursors. Science 225:898–903PubMedCrossRefGoogle Scholar
  48. Palmieri G, Giardina P, Bianco C, Scaloni A, Capasso A, Sannia G (1997) A novel white laccase from Pleurotus ostreatus. J Biol Chem 272:31301–31307PubMedCrossRefGoogle Scholar
  49. Palmieri G, Giardina P, Bianco C, Fontanella B, Sannia G (2000) Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Appl Environ Microbiol 66:920–924PubMedCrossRefGoogle Scholar
  50. Palmieri G, Cennamo G, Faraco V, Amoresano A, Sannia G, Giardina P (2003) Atypical laccase isoenzymes from copper supplemented Pleurotus ostreatus cultures. Enzyme Microb Technol 33:220–230CrossRefGoogle Scholar
  51. Palmieri G, Cennamo G, Sannia G (2005a) Remazol Brilliant Blue R decolourisation by the fungus Pleurotus ostreatus and its oxidative enzymatic system. Enzyme Microb Technol 36:17–24CrossRefGoogle Scholar
  52. Palmieri G, Giardina P, Sannia G (2005b) Laccase-mediated Remazol Brilliant Blue R decolourization in a fixed-bed bioreactor. Biotechnol Prog 21:1436–1441PubMedCrossRefGoogle Scholar
  53. Perry CR, Matcham SE, Wood DA, Thurston CF (1993) The structure of laccase protein and its synthesis by the commercial mushroom Agaricus bisporus. J Gen Microbiol 39:171–178Google Scholar
  54. Piontek K, Antorini M, Choinowski T (2002) Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-Å resolution containing a full complement of coppers. J Biol Chem 277:37663–37669PubMedCrossRefGoogle Scholar
  55. Piscitelli A, Giardina P, Mazzoni C, Sannia G (2005) Recombinant expression of Pleurotus ostreatus laccases in Kluyveromyces lactis and Saccharomyces cerevisiae. Appl Microbiol Biotechnol 69:428–439PubMedCrossRefGoogle Scholar
  56. Raeder V, Broda P (1988) Preparation and characterization of DNA from lignin degrading fungi. Methods Enzymol 161:211–220CrossRefGoogle Scholar
  57. Roberts SA, Weichsel A, Grass G, Thakali K, Hazzard JT, Tollin G, Rensing C, Montfort WR (2002) Crystal structure and electron transfer kinetics of CueO, a multicopper oxidase required for copper homeostasis in Escherichia coli. Proc Natl Acad Sci USA 99:2766–2771PubMedCrossRefGoogle Scholar
  58. Rodrıguez E, Ruiz-Duenas FJ, Kooistra R, Ramb A, Martınez AT, Martınez MJ (2008) Isolation of two laccase genes from the white-rot fungus Pleurotus eryngii and heterologous expression of the pel3 encoded protein. J Biotechnol 134:9–19PubMedCrossRefGoogle Scholar
  59. Rogalski J, Leonowicz A (1992) Phlebia radiata lactase forms induced by veratric acid and xylidine in relation to lignin peroxidase and manganese-dependent peroxidase. Acta Biotechnol 12:213–221CrossRefGoogle Scholar
  60. Rogalski J, Hatakka A, Longa B, Wojtas-Wasilewska M (1993) Hemicellulolytic enzymes of the ligninolytic white-rot fungus Phlebia radiata: influence of phenolic compounds on the synthesis of hemicellulolytic enzymes. Acta Biotechnol 13:53–57CrossRefGoogle Scholar
  61. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  62. Sanchez-Amat A, Lucas-Elio P, Fernandez E, Garcia-Borron JC, Solano F (2001) Molecular cloning and functional characterization of a unique multipotent polyphenol oxidase from Marinomonas mediterranea. Biochim Biophys Acta 1547:104–116PubMedGoogle Scholar
  63. Smith M, Shnyreva A, Wood DA, Thurston CF (1998) Tandem organization and highly disparate expression of the two laccase genes lcc1 and lcc2 in the cultivated mushroom Agaricus bisporus. Microbiology 144:1063–1069PubMedGoogle Scholar
  64. Soden DM, Dobson ADW (2001) Differential regulation of laccase gene expression in Pleurotus sajor-caju. Microbiology 147:1755–1763PubMedGoogle Scholar
  65. Soden DM, Dobson ADW (2003) The use of amplified flanking region-PCR in the isolation of laccase promoter sequences from the edible fungus Pleurotus sajor-caju. J Appl Microbiol 95:553–562PubMedCrossRefGoogle Scholar
  66. Thurston F (1994) The structure and function of fungal laccases. Microbiology 140:19–26CrossRefGoogle Scholar
  67. Ullah MA, Bedford CT, Evans CS (2000) Reactions of pentachlorophenol with laccase from Coriolus versicolor. Appl Microbiol Biotechnol 53:230–234PubMedCrossRefGoogle Scholar
  68. Yaver DS, Golightly EJ (1996) Cloning and characterization of three laccase genes from the white-rot basidiomycete Trametes villosa: genomic organization of the laccase gene family. Gene 28:95–102CrossRefGoogle Scholar
  69. Yaver DS, Xu F, Golightly EJ, Brown KM, Brown SH, Rey MW, Schneider P, Halkier T, Mondorf K, Dalbïge H (1996) Purification, characterization, molecular cloning, and expression of two lactase genes from the white rot basidiomycete Trametes villosa. Appl Environ Microbiol 62:834–841PubMedGoogle Scholar
  70. Wahleithner JA, Xu F, Brown KM, Brown SH, Golightly EJ, Halkier T, Kauppinen S, Pederson A (1996) The identification and characterisation of four laccases from the plant pathogenic fungus Rhizoctonia solani. Curr Genet 29:395–403PubMedCrossRefGoogle Scholar
  71. Wilson CJ, Apiyo D, Wittung-Stafshede P (2004) Role of cofactors in metalloprotein folding. Q Rev Biophys 37:285–314PubMedCrossRefGoogle Scholar
  72. Wood DA (1980) Productions, purifications and properties of extracellular laccase of Agaricus bisporus. J Gen Microbiol 117:327–338Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Cinzia Pezzella
    • 1
  • Flavia Autore
    • 2
  • Paola Giardina
    • 1
  • Alessandra Piscitelli
    • 1
  • Giovanni Sannia
    • 1
  • Vincenza Faraco
    • 1
    • 3
    Email author
  1. 1.Department of Organic Chemistry and BiochemistryUniversity of Naples “Federico II”, Complesso Universitario Monte S. AngeloNaplesItaly
  2. 2.Randall Division of Cell and Molecular BiophysicsKing’s College LondonLondonUK
  3. 3.School of Biotechnological SciencesUniversity of Naples “Federico II”NaplesItaly

Personalised recommendations