Current Genetics

, 54:197 | Cite as

Genetic analysis reveals different roles of Schizosaccharomyces pombe sfr1/dds20 in meiotic and mitotic DNA recombination and repair

  • Fuat K. Khasanov
  • Albina F. Salakhova
  • Olga S. Khasanova
  • Alexandra L. Grishchuk
  • Olga V. Chepurnaja
  • Vladimir G. Korolev
  • Juerg KohliEmail author
  • Vladimir I. Bashkirov
Research Article


DNA double-strand break (DSB) repair mediated by the Rad51 pathway of homologous recombination is conserved in eukaryotes. In yeast, Rad51 paralogs, Saccharomyces cerevisiae Rad55–Rad57 and Schizosaccharomyces pombe Rhp55–Rhp57, are mediators of Rad51 nucleoprotein formation. The recently discovered S. pombe Sfr1/Dds20 protein has been shown to interact with Rad51 and to operate in the Rad51-dependent DSB repair pathway in parallel to the paralog-mediated pathway. Here we show that Sfr1 is a nuclear protein and acts downstream of Rad50 in DSB processing. sfr1Δ is epistatic to rad18 and rad60 , and Sfr1 is a high-copy suppressor of the replication and repair defects of a rad60 mutant. Sfr1 functions in a Cds1-independent UV damage tolerance mechanism. In contrast to mitotic recombination, meiotic recombination is significantly reduced in sfr1Δ strains. Our data indicate that Sfr1 acts in DSB repair mainly outside of S-phase, and is required for wild-type levels of meiotic recombination. We suggest that Sfr1 acts early in recombination and has a specific role in Rad51 filament assembly, distinct from that of the Rad51 paralogs.


DNA repair Recombination UV tolerance S. pombe 



We are grateful to C. Norbury, M. J. O’Connell, P. Russell, G. Smith, H. Shinagawa, K. Shiozaki, S. Waddell, E. Hartsuiker and S. Yasuhira for strains; and to W.-D. Heyer and K. Ehmsen for helpful comments on the manuscript. This work was supported by research grants from Swiss National Science Foundation to J.K., and Swiss SCOPES grants 7SUPJ062355 and IB73AO-110965, International Research Scholar’s grant 55000299 from the Howard Hughes Medical Institute to V.I.B. and research grant 06-04-48470 from the Russian Fund for Basic Research to F.K.K.


  1. Akamatsu Y, Dziadkowiec D, Ikeguchi M, Shinagawa H, Iwasaki H (2003) Two different Swi5-containing protein complexes are involved in mating-type switching and recombination repair in fission yeast. Proc Natl Acad Sci USA 100:15770–15775PubMedCrossRefGoogle Scholar
  2. Ampatzidou E, Irmisch A, O’Connell MJ, Murray JM (2006) Smc5/6 is required for repair at collapsed replication forks. Mol Cell Biol 26:9387–9401PubMedCrossRefGoogle Scholar
  3. Bähler J, Wu JQ, Longtine MS, Shah NG, McKenzie A 3rd, Steever AB, Wach A, Philippsen P, Pringle JR (1998) Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14:943–951PubMedCrossRefGoogle Scholar
  4. Boddy MN, Lopez-Girona A, Shanahan P, Interthal H, Heyer WD, Russell P (2000) Damage tolerance protein Mus81 associates with the FHA1 domain of checkpoint kinase Cds1. Mol Cell Biol 20:8758–8766PubMedCrossRefGoogle Scholar
  5. Boddy MN, Shanahan P, McDonald WH, Lopez-Girona A, Noguchi E, Yates IJ, Russell P (2003) Replication checkpoint kinase Cds1 regulates recombinational repair protein Rad60. Mol Cell Biol 23:5939–5946PubMedCrossRefGoogle Scholar
  6. Caspari T, Murray JM, Carr AM (2002) Cdc2-cyclin B kinase activity links Crb2 and Rqh1-topoisomerase III. Genes Dev 16:1195–1208PubMedCrossRefGoogle Scholar
  7. Fousteri MI, Lehmann AR (2000) A novel SMC protein complex in Schizosaccharomyces pombe contains the Rad18 DNA repair protein. EMBO J 19:1691–1702PubMedCrossRefGoogle Scholar
  8. Grishchuk AL, Kohli J (2003) Five RecA-like proteins of Schizosaccharomyces pombe are involved in meiotic recombination. Genetics 165:1031–1043PubMedGoogle Scholar
  9. Gutz H, Heslot H, Leupold U, Loprieno N (1974) Schizosaccharomyces pombe. In: King RC (ed) Handbook of genetics. Plenum Press, New York, pp 395–446Google Scholar
  10. Hagan IM, Hyams JS (1988) The use of cell division cycle mutants to investigate the control of microtubule distribution in the fission yeast Schizosaccharomyces pombe. J Cell Sci 89(Pt 3):343–357PubMedGoogle Scholar
  11. Hartsuiker E, Vaessen E, Carr AM, Kohli J (2001) Fission yeast Rad50 stimulates sister chromatid recombination and links cohesion with repair. EMBO J 20:6660–6671PubMedCrossRefGoogle Scholar
  12. Haruta N, Akamatsu Y, Tsutsui Y, Kurokawa Y, Murayama Y, Arcangioli B, Iwasaki H (2008) Fission yeast Swi5 protein, a novel DNA recombination mediator. DNA Repair (Amst) 7:1–9CrossRefGoogle Scholar
  13. Hope JC, Maftahi M, Freyer GA (2005) A postsynaptic role for Rhp55/57 that is responsible for cell death in Deltarqh1 mutants following replication arrest in Schizosaccharomyces pombe. Genetics 170:519–531PubMedCrossRefGoogle Scholar
  14. Khasanov FK, Bashkirov VI (2001) Recombinational repair in Schizosaccharomyces pombe: role in maintaining genomic integrity. Mol Biol (Mosk) 35:750–763CrossRefGoogle Scholar
  15. Khasanov FK, Savchenko GV, Bashkirova EV, Korolev VG, Heyer WD, Bashkirov VI (1999) A new recombinational DNA repair gene from Schizosaccharomyces pombe with homology to Escherichia coli RecA. Genetics 152:1557–1572PubMedGoogle Scholar
  16. Khasanov FK, Salakhova AF, Chepurnaja OV, Korolev VG, Bashkirov VI (2004) Identification and characterization of the rlp1(+), the novel Rad51 paralog in the fission yeast Schizosaccharomyces pombe. DNA Repair (Amst) 3:1363–1374CrossRefGoogle Scholar
  17. Kurokawa Y, Murayama Y, Haruta-Takahashi N, Urabe I, Iwasaki H (2008) Reconstitution of DNA strand exchange mediated by Rhp51 recombinase and two mediators. PLoS Biol 6:e88PubMedCrossRefGoogle Scholar
  18. Laursen LV, Ampatzidou E, Andersen AH, Murray JM (2003) Role for the fission yeast RecQ helicase in DNA repair in G2. Mol Cell Biol 23:3692–3705PubMedCrossRefGoogle Scholar
  19. Lea DE, Coulson CA (1949) The distribution of the number of mutants in bacterial populations. J Genet 49:264–285CrossRefGoogle Scholar
  20. Lehmann AR, Walicka M, Griffiths DJ, Murray JM, Watts FZ, McCready S, Carr AM (1995) The rad18 gene of Schizosaccharomyces pombe defines a new subgroup of the SMC superfamily involved in DNA repair. Mol Cell Biol 15:7067–7080PubMedGoogle Scholar
  21. Martin V, Chahwan C, Gao H, Blais V, Wohlschlegel J, Yates JR 3rd, McGowan CH, Russell P (2006) Sws1 is a conserved regulator of homologous recombination in eukaryotic cells. EMBO J 25:2564–2574PubMedCrossRefGoogle Scholar
  22. Martinho RG, Lindsay HD, Flaggs G, DeMaggio AJ, Hoekstra MF, Carr AM, Bentley NJ (1998) Analysis of Rad3 and Chk1 protein kinases defines different checkpoint responses. EMBO J 17:7239–7249PubMedCrossRefGoogle Scholar
  23. Mata J, Lyne R, Burns G, Bahler J (2002) The transcriptional program of meiosis and sporulation in fission yeast. Nat Genet 32:143–147PubMedCrossRefGoogle Scholar
  24. McCready SJ, Osman F, Yasui A (2000) Repair of UV damage in the fission yeast Schizosaccharomyces pombe. Mutat Res 451:197–210PubMedGoogle Scholar
  25. Morikawa H, Morishita T, Kawane S, Iwasaki H, Carr AM, Shinagawa H (2004) Rad62 protein functionally and physically associates with the smc5/smc6 protein complex and is required for chromosome integrity and recombination repair in fission yeast. Mol Cell Biol 24:9401–9413PubMedCrossRefGoogle Scholar
  26. Morishita T, Tsutsui Y, Iwasaki H, Shinagawa H (2002) The Schizosaccharomyces pombe rad60 gene is essential for repairing double-strand DNA breaks spontaneously occurring during replication and induced by DNA-damaging agents. Mol Cell Biol 22:3537–3548PubMedCrossRefGoogle Scholar
  27. Morishita T, Furukawa F, Sakaguchi C, Toda T, Carr AM, Iwasaki H, Shinagawa H (2005) Role of the Schizosaccharomyces pombe F-Box DNA helicase in processing recombination intermediates. Mol Cell Biol 25:8074–8083PubMedCrossRefGoogle Scholar
  28. Munz P (1994) An analysis of interference in the fission yeast Schizosaccharomyces pombe. Genetics 137:701–707PubMedGoogle Scholar
  29. Murayama Y, Kurokawa Y, Mayanagi K, Iwasaki H (2008) Formation and branch migration of Holliday junctions mediated by eukaryotic recombinases. Nature 451:1018–1021PubMedCrossRefGoogle Scholar
  30. Muris DF, Vreeken K, Carr AM, Broughton BC, Lehmann AR, Lohman PH, Pastink A (1993) Cloning the RAD51 homologue of Schizosaccharomyces pombe. Nucleic Acids Res 21:4586–4591PubMedCrossRefGoogle Scholar
  31. Muris DF, Vreeken K, Carr AM, Murray JM, Smit C, Lohman PH, Pastink A (1996) Isolation of the Schizosaccharomyces pombe RAD54 homologue, rhp54+, a gene involved in the repair of radiation damage and replication fidelity. J Cell Sci 109(Pt 1):73–81PubMedGoogle Scholar
  32. Muris DF, Vreeken K, Schmidt H, Ostermann K, Clever B, Lohman PH, Pastink A (1997) Homologous recombination in the fission yeast Schizosaccharomyces pombe: different requirements for the rhp51+, rhp54+ and rad22+ genes. Curr Genet 31:248–254PubMedCrossRefGoogle Scholar
  33. Murray JM, Lindsay HD, Munday CA, Carr AM (1997) Role of Schizosaccharomyces pombe RecQ homolog, recombination, and checkpoint genes in UV damage tolerance. Mol Cell Biol 17:6868–6875PubMedGoogle Scholar
  34. Ogawa T, Yu X, Shinohara A, Egelman EH (1993) Similarity of the yeast RAD51 filament to the bacterial RecA filament. Science 259:1896–1899PubMedCrossRefGoogle Scholar
  35. Osman F, Adriance M, McCready S (2000) The genetic control of spontaneous and UV-induced mitotic intrachromosomal recombination in the fission yeast Schizosaccharomyces pombe. Curr Genet 38:113–125PubMedCrossRefGoogle Scholar
  36. Osman F, Bjoras M, Alseth I, Morland I, McCready S, Seeberg E, Tsaneva I (2003) A new Schizosaccharomyces pombe base excision repair mutant, nth1, reveals overlapping pathways for repair of DNA base damage. Mol Microbiol 48:465–480PubMedCrossRefGoogle Scholar
  37. Pastink A, Eeken JC, Lohman PH (2001) Genomic integrity and the repair of double-strand DNA breaks. Mutat Res 480–481:37–50PubMedGoogle Scholar
  38. Salakhova AF, Savchenko GV, Khasanov FK, Chepurnaia OV, Korolev VG, Bashkirov VI (2005) The dds20+ gene controls a novel Rad51Sp-dependent pathway of recombinational repair in Schizosaccharomyces pombe. Genetika 41:736–745PubMedGoogle Scholar
  39. Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L, Tagle DA, Smith S, Uziel T, Sfez S, Ashkenazi M, Pecker I, Frydman M, Harnik R, Patanjali SR, Simmons A, Clines GA, Sartiel A, Gatti RA, Chessa L, Sanal O, Lavin MF, Jaspers NGJ, Malcom A, Taylor R, Arlett CF, Miki T, Weissman SM, Lovett M, Collins FS, Shiloh Y (1995) A single Ataxia Telangiectasia gene with a product similar to PI-3 kinase. Science 268:1749–1753PubMedCrossRefGoogle Scholar
  40. Schuchert P, Kohli J (1988) The ade6–M26 mutation of Schizosaccharomyces pombe increases the frequency of crossing over. Genetics 119:507–515PubMedGoogle Scholar
  41. Sung P (1994) Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein. Science 265:1241–1243PubMedCrossRefGoogle Scholar
  42. Sung P (1997) Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase. Genes Dev 11:1111–1121PubMedCrossRefGoogle Scholar
  43. Sung P, Robberson DL (1995) DNA strand exchange mediated by a RAD51-ssDNA nucleoprotein filament with polarity opposite to that of RecA. Cell 82:453–461PubMedCrossRefGoogle Scholar
  44. Symington LS (2002) Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol Mol Biol Rev 66:630–670 table of contentsPubMedCrossRefGoogle Scholar
  45. Tavassoli M, Shayeghi M, Nasim A, Watts FZ (1995) Cloning and characterization of the Schizosaccharomyces pombe rad32 gene: a gene required for repair of double strand breaks and recombination. Nucleic Acids Res 23:383–388PubMedCrossRefGoogle Scholar
  46. Thompson LH, Schild D (2001) Homologous recombinational repair of DNA ensures mammalian chromosome stability. Mutat Res 477:131–153PubMedGoogle Scholar
  47. Tomita K, Matsuura A, Caspari T, Carr AM, Akamatsu Y, Iwasaki H, Mizuno K, Ohta K, Uritani M, Ushimaru T, Yoshinaga K, Ueno M (2003) Competition between the Rad50 complex and the Ku heterodimer reveals a role for Exo1 in processing double-strand breaks but not telomeres. Mol Cell Biol 23:5186–5197PubMedCrossRefGoogle Scholar
  48. Tsutsui Y, Morishita T, Iwasaki H, Toh H, Shinagawa H (2000) A recombination repair gene of Schizosaccharomyces pombe, rhp57, is a functional homolog of the Saccharomyces cerevisiae RAD57 gene and is phylogenetically related to the human XRCC3 gene. Genetics 154:1451–1461PubMedGoogle Scholar
  49. Tsutsui Y, Khasanov FK, Shinagawa H, Iwasaki H, Bashkirov VI (2001) Multiple interactions among the components of the recombinational DNA repair system in Schizosaccharomyces pombe. Genetics 159:91–105PubMedGoogle Scholar
  50. Ueno M, Nakazaki T, Akamatsu Y, Watanabe K, Tomita K, Lindsay HD, Shinagawa H, Iwasaki H (2003) Molecular characterization of the Schizosaccharomyces pombe nbs1+ gene involved in DNA repair and telomere maintenance. Mol Cell Biol 23:6553–6563PubMedCrossRefGoogle Scholar
  51. van den Bosch M, Vreeken K, Zonneveld JB, Brandsma JA, Lombaerts M, Murray JM, Lohman PH, Pastink A (2001) Characterization of RAD52 homologs in the fission yeast Schizosaccharomyces pombe. Mutat Res 461:311–323PubMedGoogle Scholar
  52. van den Bosch M, Zonneveld JB, Vreeken K, de Vries FA, Lohman PH, Pastink A (2002) Differential expression and requirements for Schizosaccharomyces pombe RAD52 homologs in DNA repair and recombination. Nucleic Acids Res 30:1316–1324PubMedCrossRefGoogle Scholar
  53. Verkade HM, Bugg SJ, Lindsay HD, Carr AM, O’Connell MJ (1999) Rad18 is required for DNA repair and checkpoint responses in fission yeast. Mol Biol Cell 10:2905–2918PubMedGoogle Scholar
  54. Waga S, Stillman B (1998) The DNA replication fork in eukaryotic cells. Annu Rev Biochem 67:721–751PubMedCrossRefGoogle Scholar
  55. Yasui A, McCready SJ (1998) Alternative repair pathways for UV-induced DNA damage. Bioessays 20:291–297PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Fuat K. Khasanov
    • 1
  • Albina F. Salakhova
    • 1
  • Olga S. Khasanova
    • 1
  • Alexandra L. Grishchuk
    • 2
  • Olga V. Chepurnaja
    • 3
  • Vladimir G. Korolev
    • 3
  • Juerg Kohli
    • 2
    Email author
  • Vladimir I. Bashkirov
    • 1
  1. 1.Institute of Gene BiologyRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Cell BiologyUniversity of BerneBerneSwitzerland
  3. 3.St. Petersburg Nuclear Physics InstituteRussian Academy of SciencesGatchinaRussia

Personalised recommendations