Current Genetics

, 54:111 | Cite as

From chloroplasts to “cryptic” plastids: evolution of plastid genomes in parasitic plants

  • Kirsten Krause
Review Article


To date, more than 130 plastid genomes (plastomes) have been completely sequenced. Of those, 12 are strongly reduced plastid genomes from heterotrophic plants or plant-related species that exhibit a parasitic lifestyle. Half of these species are land plants while the other half consists of unicellular species that have evolved from photosynthetic algae. Due to their specialized lifestyle, parasitic lineages experienced a loss of evolutionary pressure on the plastid genome and, in particular, on the photosynthesis-related genes. This made them tolerant for the accumulation of detrimental mutations and deletions in plastid genes. That parasitic plants are naturally occurring plastome mutants makes them a rich source of information concerning plastome evolution and the mechanisms that are involved. This review reports on the progress made in recent years with parasitic plant plastomes and attempts to summarize what we can learn from analysing the genomes of functionally reduced, or cryptic, plastids. Particularly, the loss of genes for a plastid-encoded RNA polymerase as well as an intron maturase and the retention of the gene for the large subunit of the Calvin cycle enzyme Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in selected species will be discussed.


Cryptic plastids MatK intron maturase Parasitic plants Plastid genome evolution Plastid polymerases Rubisco 





Nuclear-endoded RNA polymerase


Plastid encoded RNA polymerase


Ribulose-1,5-bisphosphate carboxylase/oxygenase



The suggestions made by T.V. Bhuvaneswari (University of Tromsø) regarding the text and the concept of the manuscript are highly appreciated. In addition, K. Fischer (University of Tromsø) and K. Krupinska (University of Kiel) are thanked for their constructive comments during preparation of the manuscript.


  1. Abdallah F, Salamini F, Leister D (2000) A prediction of the size and evolutionary origin of the proteome of chloroplasts of Arabidopsis. Trends Plant Sci 5:141–142PubMedCrossRefGoogle Scholar
  2. Allen JF (2003) The function of genomes in bioenergetic organelles. Philos Trans R Soc Lond B 358:19–38CrossRefGoogle Scholar
  3. Barbrook AC, Howe CJ, Purton S (2006) Why are plastid genomes retained in non-photosynthetic organisms? Trends Plant Sci 11:101–108PubMedCrossRefGoogle Scholar
  4. Barkman TJ, McNeal JR, Lim S-H, Coat G, Croom H, Young N, dePamphilis CW (2007) Mitochondrial DNA suggests at least 11 origins of parasitism in angiosperms and reveals genomic chimerism in parasitic plants. BMC Evol Biol 7:248PubMedCrossRefGoogle Scholar
  5. Berg S, Krupinska K, Krause K (2003) Plastids of three Cuscuta species differing in plastid coding capacity have a common parasite-specific RNA composition. Planta 218:135–142PubMedCrossRefGoogle Scholar
  6. Berg S, Krause K, Krupinska K (2004) The rbcL genes of two Cuscuta species, C. gronovii and C. subinclusa, are transcribed by the nuclear-encoded plastid RNA polymerase (NEP). Planta 219:541–546PubMedCrossRefGoogle Scholar
  7. Borza T, Popescu CE, Lee RW (2005) Multiple metabolic roles for the non-photosynthetic plastid of the green alga Prototheca wickerhamii. Eukaryot Cell 4:253–261PubMedCrossRefGoogle Scholar
  8. Bungard RA (2004) Photosynthetic evolution in parasitic plants: insight from the chloroplast genome. Bioessays 26:235–247PubMedCrossRefGoogle Scholar
  9. Cai X, Fuller AL, McDougald LR, Zhu G (2003) Apicoplast genome of the coccidian Eimeria tenella. Gene 321:39–46PubMedCrossRefGoogle Scholar
  10. Cohen I, Knopf JA, Irihimovitch V, Shapira M (2005) A proposed mechanism for the inhibitory effects of oxidative stress on Rubisco assembly and its subunit expression. Plant Physiol 137:738–746PubMedCrossRefGoogle Scholar
  11. Courtois F, Merendino L, Demarsy E, Mache R, Lerbs-Mache S (2007) Phage-type RNA polymerase RPOTmp transcribes the rrn operon from the PC promoter at early developmental stages of Arabidopsis. Plant Physiol 145:712–721PubMedCrossRefGoogle Scholar
  12. deKoning AP, Keeling PJ (2004) Nucleus-encoded genes for plastid-targeted proteins in Helicosporidium: functional diversity of a cryptic plastid in a parasitic alga. Eukaryot Cell 3:1198–1205CrossRefGoogle Scholar
  13. deKoning AP, Keeling PJ (2006) The complete plastid genome sequence of the parasitic green alga Helicosporidium sp. is highly reduced and structured. BMC Biol 4:12CrossRefGoogle Scholar
  14. Delavault P, Thalouarn P (2002) The obligate root parasite Orobanche cumara exhibits several rbcL sequences. Gene 297:85–92PubMedCrossRefGoogle Scholar
  15. Demarsy E, Courtois F, Azevedo J, Buhot L, Lerbs-Mache S (2006) Building up of the plastid transcriptional machinery during germination and early plant development. Plant Physiol 142:993–1003PubMedCrossRefGoogle Scholar
  16. deSantis-Maciossek G, Kofer W, Bock A, Schoch S, Maier RM, Wanner G, Rüdiger W, Koop HU, Herrmann RG (1999) Targeted disruption of the plastid RNA polymerase genes rpoA, B and C1: molecular biology, biochemistry and ultrastructure. Plant J 18:477–489CrossRefGoogle Scholar
  17. Ems SC, Morden CW, Dixon CK, Wolfe KH, dePamphilis CW, Palmer JD (1995) Transcription, splicing and editing of plastid RNAs in the nonphotosynthetic plant Epifagus virginiana. Plant Mol Biol 29:721–733PubMedCrossRefGoogle Scholar
  18. Fischer K, Weber A (2002) Transport of carbon in non-green plastids. Trends Plant Sci 7:345–351CrossRefGoogle Scholar
  19. Funk HT, Berg S, Krupinska K, Maier UG, Krause K (2007) Complete DNA sequences of the plastid genomes of two parasitic flowering plant species, Cuscuta reflexa and Cuscuta gronovii. BMC Plant Biol 7:45PubMedCrossRefGoogle Scholar
  20. Gardner MJ, Bishop R, Shah T, deVilliers EP, Carlton JM, Hall N, Ren Q, Paulsen IT, Pain A, Berriman M et al (2005) Genome sequence of Theileria parva, a bovine pathogen that transforms lymphocytes. Science 309:134–137PubMedCrossRefGoogle Scholar
  21. Gockel G, Hachtel W (2000) Complete map of the plastid genome of the non-photosynthetic euglenoid flagellate Astasia longa. Protist 151:347–351PubMedCrossRefGoogle Scholar
  22. Gould SB, Waller RF, McFadden GI (2008) Plastid Evolution. Annu Rev Plant Biol 59:491–517PubMedCrossRefGoogle Scholar
  23. Hagopian JC, Reis M, Kitajima JP, Battacharya D, de Oliveira MC (2004) Comparative analysis of the complete plastid genome sequence of the red alga Gracilaria tenuistipitata var. liui provides insight into the evolution of rhodoplasts and their relationship to other plastids. J Mol Evol 59:464–477PubMedCrossRefGoogle Scholar
  24. Hanaoka M, Kanamaru K, Fujiwara M, Takahashi H, Tanaka K (2005) Glutamyl-tRNA mediates a switch in RNA polymerase use during chloroplast biogenesis. EMBO Rep 6:1–6CrossRefGoogle Scholar
  25. Hausner G, Olson R, Simon D, Johnson I, Sanders ER, Karol KG, McCourt RM, Zimmerly S (2006) Origin and evolution of the chloroplast trnK (matK) intron: a model for evolution of group II intron RNA structures. Mol Biol Evol 23:380–391PubMedCrossRefGoogle Scholar
  26. Hibberd JM, Bungard RA, Press MC, Jeschke WD, Scholes JD, Quick WP (1998) Localization of photosynthetic metabolism in the parasitic angiosperm Cuscuta reflexa. Planta 205:506–513CrossRefGoogle Scholar
  27. Hübschmann T, Hess WR, Börner T (1996) Impaired splicing of the rps12 transcript in ribosome-deficient plastids. Plant Mol Biol 30:109–123PubMedCrossRefGoogle Scholar
  28. Jansen RK, Raubeson LA, Boore JL, dePamphilis CW, Chumley TW, Haberle RC, Wyman SK, Alverson AJ, Peery R, Hernam SJ, Fourcade HM, Kuehl JV, McNeal J, Leebens-Mack J, Cui L (2005) Methods for obtaining and analyzing whole chloroplast genome sequences. Methods Enzymol 395:348–384PubMedCrossRefGoogle Scholar
  29. Jansen RK, Cai Z, Raubeson LA, Daniell H, de Pamphilis CW, Leebens-Mack J, Müller KF, Guisinger-Bellian M, Haberle RC, Hansen AK, Chumley TW, Lee S-B, Peery R, McNeal J, Kuehl JV, Boore JL (2007) Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci USA 104:19369–19374PubMedCrossRefGoogle Scholar
  30. Kanevski I, Maliga P (1994) Relocation of the plastid rbcL gene to the nucleus yields functional ribulose-1, 5-bisphosphate carboxylase in tobacco chloroplasts. Proc Natl Acad Sci USA 91:1969–1973PubMedCrossRefGoogle Scholar
  31. Knauf U, Hachtel W (2002) The genes encoding subunits of ATP synthase are conserved in the reduced plastid genome of the heterotrophic alga Prototheca wickerhamii. Mol Genet Genomics 267:492–497PubMedCrossRefGoogle Scholar
  32. Krause K, Maier RM, Kofer W, Krupinska K, Herrmann RG (2000) Disruption of plastid-encoded RNA polymerase genes in tobacco: expression of only a distinct set of genes is not based on selective transcription of the plastid chromosome. Mol Gen Genet 263:1022–1030PubMedCrossRefGoogle Scholar
  33. Krause K, Berg S, Krupinska K (2003) Plastid transcription in the holoparasitic plant genus Cuscuta: parallel loss of the rrn16 PEP-promoter and of the rpoA and rpoB genes coding for the plastid-encoded RNA polymerase. Planta 216:815–823PubMedGoogle Scholar
  34. Legen J, Kemp S, Krause K, Profanter B, Herrmann RG, Maier RM (2002) Comparative analysis of plastid transcription profiles of entire plastid chromosomes from tobacco attributed to wild-type and PEP-deficient transcription machineries. Plant J 31:171–188PubMedCrossRefGoogle Scholar
  35. Lohan AJ, Wolfe KH (1998) A subset of conserved tRNA genes in plastid DNA of non-green plants. Genetics 150:425–433PubMedGoogle Scholar
  36. Lusson NA, Delavault PM, Thalouarn PA (1998) The rbcL gene from the non-photosynthetic parastite Lathraea clandestina is not transcribed by a plastid-encoded RNA polymerase. Curr Genet 34:212–215PubMedCrossRefGoogle Scholar
  37. Madey E, Nowack LM, Thompson JE (2002) Isolation and characterization of lipid in phloem sap of canola. Planta 214:625–634PubMedCrossRefGoogle Scholar
  38. Matsuzaki M, Kuroiwa H, Kuroiwa T, Kita K, Noyaki H (2008) A cryptic algal group unveiled: a plastid biosynthesis pathway in the oyster parasite Perkinsus marinus. Mol Biol Evol 25:1167–1179Google Scholar
  39. McNeal JR, Leebens-Mack JH, Arumuganathan K, Kuehl JV, Boore JL, dePamphilis CW (2006) Using partial genomic fosmid libraries for sequencing complete organellar genomes. Biotechniques 41:69–73PubMedCrossRefGoogle Scholar
  40. McNeal JR, Arumuganathan K, Kuehl JV, Boore JL, dePamphilis CW (2007a) Systematics and plastid genome evolution of the cryptically photosynthetic parasitic plant genus Cuscuta (Convolvulaceae). BMC Biol 5:55PubMedCrossRefGoogle Scholar
  41. McNeal JR, Kuehl JV, Boore JL, dePamphilis CW (2007b) Complete plastid genome sequences suggest strong selection for retention of photosynthetic genes in the parasitic plant genus Cuscuta. BMC Plant Biol 7:57PubMedCrossRefGoogle Scholar
  42. Moore RB, Obornik M, Janouskovec J, Chrudimsky T, Vancova M, Green DH, Wright S, Davies NW, Bolch CJS, Heiman K, Slapeta J, Hoegh-Gildberg O, Logsdon JM Jr, Carter DA (2008) A photosynthetic alveolate closely related to apicomplexan parasites. Nature 451:959–963PubMedCrossRefGoogle Scholar
  43. Morden CW, Wolfe KH, dePamphilis CW, Palmer JD (1991) Plastid translation and transcription genes in a non-photosynthetic plant: intact, missing and pseudo genes. EMBO J 10:3281–3288PubMedGoogle Scholar
  44. Neuhaus HE, Emes MJ (2000) Nonphotosynthetic metabolism in plastids. Annu Rev Plant Physiol Plant Mol Biol 51:111–140PubMedCrossRefGoogle Scholar
  45. Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H (1986) Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha. Nature 322:572–574CrossRefGoogle Scholar
  46. Race HL, Herrmann RG, Martin W (1999) Why have organelles retained genomes? Trends Genet 15:364–370PubMedCrossRefGoogle Scholar
  47. Revill MJW, Stanley S, Hibberd JM (2005) Plastid genome structure and loss of photosynthetic ability in the parasitic genus Cuscuta. J Exp Bot 56:2477–2486PubMedCrossRefGoogle Scholar
  48. Sanchez-Puerta MV, Lippmeier JC, Apt KE, Delwiche CF (2007) Plastid genes in a non-photosynthetic dinoflagellate. Protist 158:105–117PubMedCrossRefGoogle Scholar
  49. Schwender J, Goffman F, Ohlrogge JB, Schachar-Hill Y (2004) Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature 432:779–782PubMedCrossRefGoogle Scholar
  50. Sheveleva EV, Giordani NV, Hallick RB (2002) Identification and comparative analysis of the chloroplast α-subunit gene of DNA-dependent RNA polymerase from seven Euglena species. Nucleic Acids Res 30:1247–1254PubMedCrossRefGoogle Scholar
  51. Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsubayashi T, Zaita N, Chungwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A, Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleotide seuence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2049PubMedGoogle Scholar
  52. Siemeister G, Hachtel W (1990) Structure and expression of a gene encoding the large subunit of ribulose-1, 5-bisphosphate carboxylase (rbcL) in the colorless eugleoid flagellate Astasia longa. Plant Mol Biol 14:825–833PubMedCrossRefGoogle Scholar
  53. Stefanovic S, Olmstead RG (2005) Down the slippery slope: plastid genome evolution in Convolvulaceae. J Mol Evol 61:292–305PubMedCrossRefGoogle Scholar
  54. Tartar A, Boucias DG (2004) The non-photosynthetic, pathogenic green alga Helicosporidium sp. has retained a modified, functional plastid genome. FEMS Microbiol Lett 233:153–157PubMedCrossRefGoogle Scholar
  55. Thalouarn P, Theodet C, Russo N, Delavault P (1994) The reduced plastid genome of a non-photosynthetic angiosperm Orobanche hederae has retained the rbcL gene. Plant Physiol Biochem 32:233–242Google Scholar
  56. van der Kooij TAW, Krause K, Dörr I, Krupinska K (2000) Molecular, functional and ultrastructural characterisation of plastids from six species of the parasitic flowering plant genus Cuscuta. Planta 210:701–707PubMedCrossRefGoogle Scholar
  57. van der Kooij TAW, Krupinska K, Krause K (2005) Tocochromanol content and composition in different species of the parasitic flowering plant genus Cuscuta. J Plant Physiol 162:777–781PubMedCrossRefGoogle Scholar
  58. Vogel J, Hübschmann T, Börner T (1997) Splicing and intron-internal RNA editing of trnK-matK transcripts in barley plastids: support of matK as an essential splice factor. J Mol Biol 270:179–187PubMedCrossRefGoogle Scholar
  59. Wickett NJ, Yhang Y, Hansen SK, Roper JM, Kuehl JV, Plock SA, Wolf PG, dePamphilis CW, Boore JL, Goffinet B (2008) Functional gene losses occur with minimal size reduction in the plastid genome of the parasitic liverwort Aneura mirabilis. Mol Biol Evol 25:393–401PubMedCrossRefGoogle Scholar
  60. Williamson DH, Gardner MJ, Preiser P, Moore DJ, Rangachari K, Wilson RJM (1994) The evolutionary origin of the 35 kb circular DNA of Plasmodium falciparum: new evidence supports a possible rhodophyte ancestry. Mol Gen Genet 243:249–252PubMedGoogle Scholar
  61. Wilson RJM, Denny PW, Preiser PR, Rangachari K, Roberts K, Roy A, Whyte A, Strath M, Moore DJ, Moore PW, Williamson DH (1996) Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. J Mol Biol 261:155–172PubMedCrossRefGoogle Scholar
  62. Wolf PG, Rowe CA, Sinclair RB, Hasebe M (2003) Complete nucleotide sequence of the chloroplast genome from a leptosporangiate fern, Adiantum capillus-veneris. DNA Res 10:59–65PubMedCrossRefGoogle Scholar
  63. Wolfe AD, Morden CW, Palmer JD (1992) Function and evolution of a minimal plastid genome from a non-photosynthetic plant. Proc Natl Acad Sci USA 89:10648–10652PubMedCrossRefGoogle Scholar
  64. Wolfe AD, dePamphilis CW (1997) Alternate pathways of evolution for the photosynthetic gene rbcl in four non-photosynthetic species of Orobanche. Plant Mol Biol 33:965–977PubMedCrossRefGoogle Scholar
  65. Wolfe AD, dePamphilis CW (1998) The effect of relaxed functional constraints on the photosynthetic gene rbcL in photosynthetic and non-photosynthetic parasitic plants. Mol Biol Evol 15:1243–1258PubMedGoogle Scholar
  66. Woodson JD, Chory J (2008) Coordination of gene expression between organellar and nuclear genomes. Nat Rev Genet 9:383–395PubMedCrossRefGoogle Scholar
  67. Yosef I, Irihimovitch V, Knopf JA, Cohen I, Orr-Dahan I, Nahum E, Keasar C, Shapira M (2004) RNA binding activity of the Ribulose-1, 5-bisphosphate carboxylase/oxygenase large subunit from Chlamydomonas reinhardtii. J Biol Chem 279:10148–10156PubMedCrossRefGoogle Scholar
  68. Zerges W (2002) Does complexity constrain organelle evolution? Trends Plant Sci 7:175–182PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of BiologyUniversity of TromsøTromsøNorway

Personalised recommendations