Current Genetics

, 53:323 | Cite as

Characterization of the systems governing sexual and self-recognition in the white rot homobasidiomycete Amylostereum areolatum

  • Magriet A. van der NestEmail author
  • Bernard Slippers
  • Jan Stenlid
  • Pieter M. Wilken
  • Rimvis Vasaitis
  • Michael J. Wingfield
  • Brenda D. Wingfield
Research Article


This study considered the systems controlling sexual and self-recognition in Amylostereum areolatum, a homobasidiomycetous symbiont of the Sirex woodwasp. To investigate the structure and organization of these systems in A. areolatum, we identified a portion of a putative homologue (RAB1) of the pheromone receptor genes of Schizophyllum commune and Coprinus cinereus, and a portion of a putative homologue of the S. commune mitochondrial intermediate peptidase (mip) gene. Diagnostic DNA-based assays for mating-type were developed and their application confirmed that the fungus has a heterothallic tetrapolar mating system. Segregation analysis showed that RAB1 is linked to mating-type B, while mip is linked to mating-type A. The results of sexual and vegetative compatibility tests suggest that sexual recognition in A. areolatum is controlled by two multiallelic mat loci, while self-recognition is controlled by at least two multiallelic het loci. Therefore, despite the association of A. areolatum with the woodwasp and the unique mixture of sexual and clonal reproduction of the fungus, both recognition systems of the fungus appear to be similar in structure and function to those of other homobasidiomycetes. This is the first report regarding the genes controlling recognition of a homobasidiomycete involved in an obligate mutualistic relationship with an insect.


Pheromone receptor Mitochondrial intermediate peptidase Mating-type Vegetative incompatibility Het loci 



We thank the National Research Foundation (NRF), members of the Tree Pathology Co-operative Programme (TPCP) and the THRIP initiative of the Department of Trade and Industry (DTI), South Africa for financial support. We also acknowledge the colleagues mentioned for supplying fungi used in this study.


  1. Badrane H, May G (1999) The divergence-homogenization duality in the evolution of the b1 mating type gene of Coprinus cinereus. Mol Biol Evol 16:975–986PubMedGoogle Scholar
  2. Barraeau C, Iskandar M, Loubradou G, Levallois V, Bérgueret J (1998) The mod-A suppressor of nonallelic heterokaryon incompatibility in Podospora anserina encodes a proline-rich polypetide involved in female organ formation. Genetics 149:915–926Google Scholar
  3. Barret DK, Uscuplic M (1971) The field distribution of interacting strains of Polyporus Schweinitzii and their origin. New Phytol 70:581–598CrossRefGoogle Scholar
  4. Bégueret J, Turcq B, Clavé C (1994) Vegetative incompatibility in filamentous fungi: het genes begin to talk. Trends Genet 10:441–446PubMedCrossRefGoogle Scholar
  5. Bernet J (1992) In Podospora anserina, protoplasmic incompatibility genes are involved in cell death control via multiple gene interactions. Heredity 68:79–87CrossRefGoogle Scholar
  6. Boidin J, Lanquentin P (1984) Le genre Amylostereum (Basidiomycetes) intercompatibilités partielles entre espèces allopartriques. Bull Trimest Soc Mycol Fr 100:211–236Google Scholar
  7. Casselton LA, Olesnicky NS (1998) Molecular genetics of mating recognition in basidiomycete fungi. Microbiol Mol Biol Rev 62:55–70PubMedGoogle Scholar
  8. Charlesworth D, Charlesworth B (1987) Inbreeding depression and its evolutionary consequences. Annu Rev Ecol Syst 18:237–268CrossRefGoogle Scholar
  9. Coppin E, Debuchy R, Arnaise S, Picard M (1997) Mating types and sexual development in filamentous ascomycetes. Microbiol Mol Biol Rev 61:411–428PubMedGoogle Scholar
  10. Cortesi P, Milgroom MG (1998) Genetics of vegetative incompatibility in Cryphonectria parasitica. Appl Environ Microbiol 64:2988–2994PubMedGoogle Scholar
  11. Douglas AE (1998) Host benefit and the evolution of specialization in symbiosis. Heredity 81:599–603CrossRefGoogle Scholar
  12. Frank SA (1996) Host control of symbiont transmission: the separation of symbionts into germ and soma. Am Nat 148:1113–1124CrossRefGoogle Scholar
  13. Gaut IPC (1969) Identity of the fungal symbiont of Sirex noctilio. Aust J Biol Sci 22:905–914Google Scholar
  14. Gilmour JW (1965) The life cycle of the fungal symbiont of Sirex noctilio. NZ J For 10:80–89Google Scholar
  15. Glass NL, Kaneko I (2003) Fatal attraction: nonself recognition and heterokaryon incompatibility in filamentous fungi. Eukaryot Cell 2:1–8PubMedCrossRefGoogle Scholar
  16. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  17. Halsall JR, Milner MJ, Casselton LA (2000) Three subfamilies of pheromone and receptor genes generated multiple B mating specificities in the mushroom Coprinus cinereus. Genetics 154:1115–1123PubMedGoogle Scholar
  18. Hansen EM, Stenlid J, Johansson M (1993) Genetic control of somatic incompatibility in the root-rotting basidiomycete Heterobasidion annosum. Mycol Res 97:1229–1233CrossRefGoogle Scholar
  19. Hansen EM, Stenlid J, Johansson M (1994) Somatic incompatibility in Heterobasidion annosum and Phellinus weirii. In: Johansson M, Stenlid J (eds) Proceedings of the eight IUOFRO Root and Butt Rot Conference. Swedish University of Agricultural Sciences, Uppsala, pp 323–333Google Scholar
  20. Herre EA, Knowlton N, Mueller UG, Rehner SA (1999) The evolution of mutualisms: exploring the paths between conflict and cooperation. Tree 14:49–53PubMedGoogle Scholar
  21. James TY, Kües U, Rehner SA, Vilgalys R (2004a) Evolution of the gene encoding mitochondrial intermediate peptidase and its cosegregation with the A mating-type locus of mushroom fungi. Fungal Genet Biol 41:381–390PubMedCrossRefGoogle Scholar
  22. James TY, Liou S-R, Vilgalys R (2004b) The genetic structure and diversity of the A and B mating type genes from the tropical oyster mushroom, Pleurotus djamor. Fungal Genet Biol 41:813–825PubMedCrossRefGoogle Scholar
  23. Kaneko I, Dementhon K, Xiang Q, Glass NL (2006) Nonallelic interactions between het-c and a polymorphic locus, pin-c, are essential for nonself-recognition and programmed cell death in Neurospora crassa. Genetics 172:1545–1555PubMedCrossRefGoogle Scholar
  24. Kauserud H (2004) Widespread vegetative compatibility groups in the dry-rot fungus Serpula lacrymans. Mycologia 96:232–239CrossRefGoogle Scholar
  25. Kauserud H, Saetre G-P, Schmidt O, Decock C, Schumacher T (2006) Genetics of self/nonself-recognition in Serpula lacrymans. Fungal Genet Biol 43:503–510PubMedCrossRefGoogle Scholar
  26. King JM (1966) Same aspects of the biology of the fungal symbiont of Sirex noctilio. Aust J Bot 14:25–30CrossRefGoogle Scholar
  27. Korb J, Aanen DK (2003) The evolution of uniparental transmission of fungal symbionts in fungus-growing termites (Macrotermitinae). Behav Ecol Sociobiol 53:65–71Google Scholar
  28. Kothe E (1996) Tetrapolar fungal mating types: sexes by the thousands. FEMS Microbiol Rev 18:65–87PubMedCrossRefGoogle Scholar
  29. Kronstad JW, Staben C (1997) Mating type in filamentous fungi. Annu Rev Genet 31:245–76PubMedCrossRefGoogle Scholar
  30. Kües U, Walser PJ, Klaus MJ, Aebi M (2002) Influence of activated A and B mating–type pathways on developmental processes in the basidiomycete Coprinus cinereus. Mol Genet Genomics 268:262–271PubMedCrossRefGoogle Scholar
  31. Lind M, Stenlid J, Olson A (2007) Genetics and QTL mapping of somatic incompatibility and intraspecific interactions in the basidiomycete Heterobasidion annosum s.l. Fungal Genet Biol 44:1242–1251PubMedCrossRefGoogle Scholar
  32. Leslie JF, Yamashiro CT (1997) Effects of the tol mutation on allelic interactions at the het loci in Neurospora crassa. Genome 40:834–840PubMedCrossRefGoogle Scholar
  33. Madden JL, Coutts MP (1979) The role of fungi in the biology and ecology of woodwasps (Hymenoptera: Siricidae). In: Batra LR (ed) Insect–fungus symbiosis. Wiley, New York, pp 165–174Google Scholar
  34. Mara RE, Milgroom MG (1999) PCR amplification of the mating-type idiomorphs in Cryphonectria parasitica. Mol Ecol 8:1947–1950CrossRefGoogle Scholar
  35. Marçais B, Caël O, Delatour C (2000) Genetics of somatic incompatibility in Collybia fusipes. Mycol Res 104:304–310CrossRefGoogle Scholar
  36. Matsumoto N, Uchiyama K, Tsushima S (1996) Genets of Typhula ishikariensis biotype A belonging to a vegetative compatibility group. Can J Bot 74:1695–1700CrossRefGoogle Scholar
  37. May G, Shaw F, Badrane H, Vekemans X (1999) The signature of balancing selection: fungal mating compatibility gene evolution. Proc Natl Acad Sci USA 96:9172–9177PubMedCrossRefGoogle Scholar
  38. Martin MM (1992) The evolution of insect–fungus associations: from contact to stable symbiosis. Am Zool 32:593–605Google Scholar
  39. Milgroom MG, Cortesi P (1999) Analysis of population structure of the chestnut blight fungus based on vegetative incompatibility genotypes. Proc Natl Acad Sci USA 96:10518–10523PubMedCrossRefGoogle Scholar
  40. Muirhead CA, Glass NL, Slatkin M (2002) Multilocus self-recognition systems in fungi as a cause of trans-species polymorphism. Genetics 161:633–641PubMedGoogle Scholar
  41. Nauta MJ, Hoekstra RF (1996) Vegetative incompatibility in ascomycetes: highly polymorphic but selectively neutral. J Theor Biol 183:67–76CrossRefGoogle Scholar
  42. Perkins DD (1988) Main features of vegetative incompatibility in Neurospora. Fungal Genet Newsl 35:44–46Google Scholar
  43. Rayner ADM (1991) The challenge of the individualistic mycelium. Mycologia 83:48–71CrossRefGoogle Scholar
  44. Richman A (2000) Evolution of balanced genetic polymorphism. Mol Ecol 9:1953–1963PubMedCrossRefGoogle Scholar
  45. Rizzo DM, Rentmeester RM, Burdsall HH (1995) Sexuality and somatic incompatibility in Phellinus gilvus. Mycologia 87:805–820CrossRefGoogle Scholar
  46. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbour Laboratory Press, New YorkGoogle Scholar
  47. Saupe SJ, Turcq B, Bégueret J (1995) A gene responsible for vegetative incompatibility in the fungus Podospora anserina encodes a protein with a GTP-binding motif and Gβ homologous domain. Gene 162:135–139PubMedCrossRefGoogle Scholar
  48. Siebert PD, Chenchik A, Kellog DE, Lukyanov KA, Lukyanov SA (1995) An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res 23:1087–1088PubMedCrossRefGoogle Scholar
  49. Slippers B, Wingfield MJ, Coutinho TA, Winfield BD (2001) Population structure and possible origin of Amylostereum areolatum in South Africa. Plant Pathol 50:206–210CrossRefGoogle Scholar
  50. Slippers B, Coutinho TA, Wingfield BD, Wingfield MJ (2003) A review of the genus Amylostereum and its association with woodwasps. SAJS 99:70–74Google Scholar
  51. Steel RG, Torrie JH, Dickey DA (1997) Principles and procedures of statistics. A biometrical approach. McGraw-Hill, New YorkGoogle Scholar
  52. Steenkamp ET, Wingfield BD, Coutinho TA, Zeller KA, Wingfield MJ, Marasas WFO, Leslie JF (2000) PCR-based identification of MAT-1 and MAT-2 in the Gibberella fujikuroi species complex. Appl Environ Microbiol 66:4378–4382PubMedCrossRefGoogle Scholar
  53. Steenkamp ET, Wright J, Baldauf SL (2006) The protistan origins of animals and fungi. Mol Biol Evol 23:93–106PubMedCrossRefGoogle Scholar
  54. Stenlid J, Vasiliauskas R (1998) Genetic diversity within and among vegetative compatibility groups of Stereum sanguinolentum determined by arbitrary primed PCR. Mol Ecol 7:1265–1274CrossRefGoogle Scholar
  55. Takebayashi N, Newbigin E, Uyenoyama MK (2004) Maximum-likelihood estimation of rates of recombination within mating-type regions. Genetics 167:2097–2109PubMedCrossRefGoogle Scholar
  56. Talbot PHB (1977) The Sirex– Amylostereum– Pinus association. Annu Rev Phytopathol 15:41–54CrossRefGoogle Scholar
  57. Thomsen IM (1998) Characters of fruitbodies, basidiospores and cultures useful for recognizing Amylostereum areolatum and Amylostereum chailletii. Mycotaxon 69:419–428Google Scholar
  58. Thomsen IM, Koch J (1999) Somatic incompatibility in Amylostereum areolatum and A. chialletii as a consequence of symbiosis with siricid woodwasp. Mycol Res 103:817–823CrossRefGoogle Scholar
  59. Turgeon G, Yoder OC (2000) Proposed nomenclature for mating type genes of filamentous ascomycetes. Fungal Genet Biol 31:1–5PubMedCrossRefGoogle Scholar
  60. Uyenoyama MK (2004) Evolution under tight linkage to mating type. New Phytol 165:63–70CrossRefGoogle Scholar
  61. Vasiliauskas R, Stenlid J (1999) Vegetative compatibility groups of Amylostereum areolatum and A. chialletii from Sweden and Lithuania. Mycol Res 103:824–829CrossRefGoogle Scholar
  62. Vasiliauskas R, Stenlid J, Thomsen IM (1998) Clonality and genetic variation in Amylostereum areolatum and A. chailletii from northern Europe. New Phytol 139:751–758CrossRefGoogle Scholar
  63. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedCrossRefGoogle Scholar
  64. Worrall JJ (1997) Somatic incompatibility in Basidiomycetes. Mycologia 89:24–36CrossRefGoogle Scholar
  65. Yokoyama E, Yamagishi K, Hara A (2004) Development of a PCR-based mating-type assay for Clavicipitaceae. FEMS Microbiol Lett 237:205–212PubMedGoogle Scholar
  66. Zhou XD, De Beer ZW, Ahumada R, Wingfield BD, Wingfield MJ (2004) Ophiostomatoid fungi associated with two pine-infesting bark beetles from Chile. Fungal Divers 15:253–266Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Magriet A. van der Nest
    • 1
    Email author
  • Bernard Slippers
    • 1
  • Jan Stenlid
    • 2
  • Pieter M. Wilken
    • 1
  • Rimvis Vasaitis
    • 2
  • Michael J. Wingfield
    • 1
  • Brenda D. Wingfield
    • 1
  1. 1.Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI)University of PretoriaPretoriaSouth Africa
  2. 2.Department of Forest Mycology and PathologySwedish University of Agricultural SciencesUppsalaSweden

Personalised recommendations