Current Genetics

, Volume 52, Issue 3–4, pp 137–148 | Cite as

Exploration of whole-genome responses of the human AIDS-associated yeast pathogen Cryptococcus neoformans var grubii: nitric oxide stress and body temperature

  • Eric D. Chow
  • Oliver W. Liu
  • Sean O’Brien
  • Hiten D. MadhaniEmail author
Research Article


Cryptococcus neoformans var grubii is an opportunistic basidiomycete yeast pathogen that is a significant cause of HIV/AIDS-related deaths worldwide. We describe a whole-genome oligonucleotide microarray for this pathogen. These arrays have been used to elucidate the transcriptional responses of the genome to heat shock as well as to two conditions relevant to human infections: body temperature and nitric oxide (NO) stress produced by the NO donor DPTA-NONOate. This analysis revealed an NO-inducible C. neoformans-specific four-gene family that showed a highly similar transcriptional profile to that of FHB1, a previously described NO dioxygenase/flavohemoglobin required for virulence. NO treatment also induced genes involved in the synthesis of the antioxidant mannitol, a polyol that accumulates in the cerebrospinal fluid of infected patients. Exposure to NO also caused increased expression of the sole C. neoformans var grubii protein with HHE/hemerythrin cation binding motifs. Notably, a similar gene in E. coli, ytfE, has been shown to be NO-inducible and protects bacterial cells from killing by NO. Genes induced by NO were highly enriched for those repressed at 37°C, indicating an unexpected interplay between temperature and NO regulation in this basidiomycete. Resources described here should facilitate future investigations of this lethal human yeast pathogen.


Fungal pathogenesis Nitric oxide DNA microarray Transcriptional profiling Annotation database Genomic 



We are grateful to the following laboratories for use of their data. JEC21 sequence data: Brendan Loftus’ group at The Institute for Genomic Research (TIGR). H99 sequence data: Eli & Edythe L. Broad Institute. H99 sequence data: Fred Dietrich’s group at the Duke Center for Genome Technology. B3501 sequence data: Richard Hyman’s group at Stanford Genome Technology Center. ESTs (H99 and B3501): Univeristy of Oklahoma Center for Advanced Genome Technology. Twinscan predicted proteins: Michael Brent at Washington University. This work was supported by an Opportunity Grant from the Herb and Marion Sandler Foundation and a grant from the US National Institutes of Health.

Supplementary material

294_2007_147_MOESM1_ESM.xls (1.4 mb)
Table S1 (XLS 1464 kb)
294_2007_147_MOESM2_ESM.xls (1.3 mb)
Table S2 (XLS 1298 kb)
294_2007_147_MOESM3_ESM.xls (10 kb)
Table S3 (XLS 10 kb)
294_2007_147_MOESM4_ESM.xls (1.6 mb)
Table S4 (XLS 1662 kb)


  1. Akhter S, McDade HC, Gorlach JM, Heinrich G, Cox GM, Perfect JR (2003) Role of alternative oxidase gene in pathogenesis of Cryptococcus neoformans. Infect Immun 71:5794–5802PubMedCrossRefGoogle Scholar
  2. Altschul SF et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCrossRefGoogle Scholar
  3. Amornkul PN et al (2003) Human immunodeficiency virus type 1 subtype and other factors associated with extrapulmonary Cryptococcosis among patients in Thailand with AIDS. AIDS Res Hum Retroviruses 19:85–90PubMedCrossRefGoogle Scholar
  4. Banerjee U, Datta K, Casadevall A (2004) Serotype distribution of Cryptococcus neoformans in patients in a tertiary care center in India. Med Mycol 42:181–186PubMedCrossRefGoogle Scholar
  5. Bicanic T, Harrison TS (2004) Cryptococcal meningitis. Br Med Bull 72:99–118PubMedCrossRefGoogle Scholar
  6. Bozdech Z, Zhu J, Joachimiak MP, Cohen FE, Pulliam B, DeRisi JL (2003) Expression profiling of the schizont and trophozoite stages of Plasmodium falciparum with a long-oligonucleotide microarray. Genome Biol 4:R9PubMedCrossRefGoogle Scholar
  7. Bryan NS et al (2005) Nitrite is a signaling molecule and regulator of gene expression in mammalian tissues. Nat Chem Biol 1:290–297PubMedCrossRefGoogle Scholar
  8. Canteros CE, Brudny M, Rodero L, Perrotta D, Davel G (2002) Distribution of Cryptococcus neoformans serotypes associated with human infections in Argentina. Rev Argent Microbiol 34:213–218PubMedGoogle Scholar
  9. Corbett EL et al (2002) Morbidity and mortality in South African gold miners: impact of untreated disease due to human immunodeficiency virus. Clin Infect Dis 34:1251–1258PubMedCrossRefGoogle Scholar
  10. de Jesus-Berrios M, Liu L, Nussbaum JC, Cox GM, Stamler JS, Heitman J (2003) Enzymes that counteract nitrosative stress promote fungal virulence. Curr Biol 13:1963–1968PubMedCrossRefGoogle Scholar
  11. DeRisi JL, Iyer VR, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278:680–686PubMedCrossRefGoogle Scholar
  12. Dromer F, Mathoulin-Pelissier S, Launay O, Lortholary O (2007) Determinants of disease presentation and outcome during cryptococcosis: the CryptoA/D study. PLoS Med 4:e21PubMedCrossRefGoogle Scholar
  13. French N et al (2002) Cryptococcal infection in a cohort of HIV-1-infected Ugandan adults. Aids 16:1031–1038PubMedCrossRefGoogle Scholar
  14. Gasch AP et al (2000) Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257PubMedGoogle Scholar
  15. Hromatka BS, Noble SM, Johnson AD (2005) Transcriptional response of Candida albicans to nitric oxide and the role of the YHB1 gene in nitrosative stress and virulence. Mol Biol Cell 16:4814–4826PubMedCrossRefGoogle Scholar
  16. Hull CM, Heitman J (2002) Genetics of Cryptococcus neoformans. Annu Rev Genet 36:557–615PubMedCrossRefGoogle Scholar
  17. Idnurm A, Bahn YS, Nielsen K, Lin X, Fraser JA, Heitman J (2005) Deciphering the model pathogenic fungus Cryptococcus neoformans. Nat Rev Microbiol 3:753–764PubMedCrossRefGoogle Scholar
  18. Justino MC, Vicente JB, Teixeira M, Saraiva LM (2005) New genes implicated in the protection of anaerobically grown Escherichia coli against nitric oxide. J Biol Chem 280:2636–2643PubMedCrossRefGoogle Scholar
  19. Kraus PR et al (2004) Identification of Cryptococcus neoformans temperature-regulated genes with a genomic-DNA microarray. Eukaryot Cell 3:1249–1260PubMedCrossRefGoogle Scholar
  20. Loftus BJ et al (2005) The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans. Science 307:1321–1324PubMedCrossRefGoogle Scholar
  21. Lortholary O et al (2006) Long-term outcome of AIDS-associated cryptococcosis in the era of combination antiretroviral therapy. Aids 20:2183–2191PubMedCrossRefGoogle Scholar
  22. Marichal P et al (1999) Accumulation of 3-ketosteroids induced by itraconazole in azole-resistant clinical Candida albicans isolates. Antimicrob Agents Chemother 43:2663–2670PubMedGoogle Scholar
  23. Megson GM, Stevens DA, Hamilton JR, Denning DW (1996) d-mannitol in cerebrospinal fluid of patients with AIDS and cryptococcal meningitis. J Clin Microbiol 34:218–221PubMedGoogle Scholar
  24. Missall TA, Cherry-Harris JF, Lodge JK (2005) Two glutathione peroxidases in the fungal pathogen Cryptococcus neoformans are expressed in the presence of specific substrates. Microbiology 151:2573–2581PubMedCrossRefGoogle Scholar
  25. Missall TA, Pusateri ME, Donlin MJ, Chambers KT, Corbett JA, Lodge JK (2006) Posttranslational, translational, and transcriptional responses to nitric oxide stress in Cryptococcus neoformans: implications for virulence. Eukaryot Cell 5:518–529PubMedCrossRefGoogle Scholar
  26. Mwaba P et al (2001) Clinical presentation, natural history, and cumulative death rates of 230 adults with primary cryptococcal meningitis in Zambian AIDS patients treated under local conditions. Postgrad Med J 77:769–773PubMedCrossRefGoogle Scholar
  27. Nathan C, Shiloh MU (2000) Reactive oxygen and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc Natl Acad Sci USA 97:8841–8848PubMedCrossRefGoogle Scholar
  28. Nierman WC et al (2005) Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438:1151–1156PubMedCrossRefGoogle Scholar
  29. Nittler MP, Hocking-Murray D, Foo CK, Sil A (2005) Identification of Histoplasma capsulatum transcripts induced in response to reactive nitrogen species. Mol Biol Cell 16:4792–4813PubMedCrossRefGoogle Scholar
  30. Sarver A, DeRisi J (2005) Fzf1p regulates an inducible response to nitrosative stress in Saccharomyces cerevisiae. Mol Biol Cell 16:4781–4791PubMedCrossRefGoogle Scholar
  31. Suvarna K, Bartiss A, Wong B (2000) Mannitol-1-phosphate dehydrogenase from Cryptococcus neoformans is a zinc-containing long-chain alcohol/polyol dehydrogenase. Microbiology 146(Pt 10):2705–2713PubMedGoogle Scholar
  32. Tenney AE, Brown RH, Vaske C, Lodge JK, Doering TL, Brent MR (2004) Gene prediction and verification in a compact genome with numerous small introns. Genome Res 14:2330–2335PubMedCrossRefGoogle Scholar
  33. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121PubMedCrossRefGoogle Scholar
  34. Wheelan SJ, Church DM, Ostell JM (2001) Spidey: a tool for mRNA-to-genomic alignments. Genome Res 11:1952–1957PubMedGoogle Scholar
  35. Yamamoto T, Bing RJ (2000) Nitric oxide donors. Proc Soc Exp Biol Med 225:200–206PubMedCrossRefGoogle Scholar
  36. Yeats C, Bentley S, Bateman A (2003) New knowledge from old: in silico discovery of novel protein domains in Streptomyces coelicolor. BMC Microbiol 3:3PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Eric D. Chow
    • 1
  • Oliver W. Liu
    • 1
  • Sean O’Brien
    • 1
  • Hiten D. Madhani
    • 1
    Email author
  1. 1.Department of Biochemistry and BiophysicsUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations