Current Genetics

, Volume 52, Issue 2, pp 87–95 | Cite as

Special type of pheromone-induced invasive growth in Saccharomyces cerevisiae

  • Ivana Frýdlová
  • Marek Basler
  • Pavla Vašicová
  • Ivana Malcová
  • Jiří Hašek
Research Article


The ability to invade a solid substrate is an important phenomenon due to its connection with pathogenic activity of fungi. We report here on invasion displayed by MATα cells of Saccharomyces cerevisiae lacking Isw2p, a subunit of the ISW2 chromatin remodelling complex. We found that on minimal medium, where the isw2Δ MATα mutant is not invasive, additional absence of another ISW2 complex subunit, Dls1p or Dpb4p, promoted invasion. Our microarray data showed that derepression of MATa-specific genes caused by absence of Isw2p is very low. Their expression is increased only by the autocrine activation of the mating pathway. Invasion of isw2Δ MATα cells thus resembles the pheromone-induced invasion, including dependence on Fig2p. We show here that another pheromone-induced protein, mating agglutinin Aga1p, can play a role in the agar adhesion necessary for invasion. In contrast with MATa-cells invading agar under low α-pheromone concentration, the invasive growth of isw2Δ cells specifically requires Fus3 kinase. Its function in the invasion of isw2Δ MATα cells cannot be completely substituted by Kss1 kinase, which plays a basic role in invasive growth signalling. We suggest that partial dependence of the isw2Δ MATα invasion on Fus3p and Aga1p corresponds to a weaker pheromone response of this mutant.


Agglutinins ISW2 complex Aga1 Fus3 Kss1 

Supplementary material


  1. Banuett F (1998) Signalling in the yeasts: an informational cascade with links to the filamentous fungi. Microbiol Mol Biol Rev 62:249–274PubMedGoogle Scholar
  2. Cook JG, Bardwell L, Thorner J (1997) Inhibitory and activating functions for MAPK Kss1 in the S. cerevisiae filamentous-growth signalling pathway. Nature 390:85–88PubMedCrossRefGoogle Scholar
  3. Cullen PJ, Sprague GF Jr (2000) Glucose depletion causes haploid invasive growth in yeast. Proc Natl Acad Sci USA 97:13619–13624PubMedCrossRefGoogle Scholar
  4. D’Souza CA, Alspaugh JA, Yue C, Harashima T, Cox GM, Perfect JR, Heitman J (2001) Cyclic AMP-dependent protein kinase controls virulence of the fungal pathogen Cryptococcus neoformans. Mol Cell Biol 21:3179–3191PubMedCrossRefGoogle Scholar
  5. Elion EA, Brill JA, Fink GR (1991) FUS3 represses CLN1 and CLN2 and in concert with KSS1 promotes signal transduction. Proc Natl Acad Sci USA 88:9392–9396PubMedCrossRefGoogle Scholar
  6. Erdman S, Lin L, Malczynski M, Snyder M (1998) Pheromone-regulated genes required for yeast mating differentiation. J Cell Biol 140:461–483PubMedCrossRefGoogle Scholar
  7. Erdman S, Snyder M (2001) A filamentous growth response mediated by the yeast mating pathway. Genetics 159:919–928PubMedGoogle Scholar
  8. Fazzio TG, Kooperberg C, Goldmark JP, Neal C, Basom R, Delrow J, Tsukiyama T (2001) Widespread collaboration of Isw2 and Sin3-Rpd3 chromatin remodeling complexes in transcriptional repression. Mol Cell Biol 21:6450–6460PubMedCrossRefGoogle Scholar
  9. Gancedo JM (2001) Control of pseudohyphae formation in Saccharomyces cerevisiae. FEMS Microbiol Rev 25:107–123PubMedCrossRefGoogle Scholar
  10. Ganter B, Tan S, Richmond TJ (1993) Genomic footprinting of the promoter regions of STE2 and STE3 genes in the yeast Saccharomyces cerevisiae. J Mol Biol 234:975–987PubMedCrossRefGoogle Scholar
  11. Gavin IM, Kladde MP, Simpson RT (2000) Tup1p represses Mcm1p transcriptional activation and chromatin remodeling of an a-cell-specific gene. Embo J 19:5875–5883PubMedCrossRefGoogle Scholar
  12. Gelbart ME, Rechsteiner T, Richmond TJ, Tsukiyama T (2001) Interactions of Isw2 chromatin remodeling complex with nucleosomal arrays: analyses using recombinant yeast histones and immobilized templates. Mol Cell Biol 21:2098–2106PubMedCrossRefGoogle Scholar
  13. Gimeno CJ, Ljungdahl PO, Styles CA, Fink GR (1992) Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68:1077–1090PubMedCrossRefGoogle Scholar
  14. Goldmark JP, Fazzio TG, Estep PW, Church GM, Tsukiyama T (2000) The Isw2 chromatin remodeling complex represses early meiotic genes upon recruitment by Ume6p. Cell 103:423–433PubMedCrossRefGoogle Scholar
  15. Gueldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH (2002) A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucl Acids Res 30:e23PubMedCrossRefGoogle Scholar
  16. Guo B, Styles CA, Feng Q, Fink GR (2000) A Saccharomyces gene family involved in invasive growth, cell-cell adhesion, and mating. Proc Natl Acad Sci USA 97:12158–12163PubMedCrossRefGoogle Scholar
  17. Iida T, Araki H (2004) Noncompetitive counteractions of DNA polymerase epsilon and ISW2/yCHRAC for epigenetic inheritance of telomere position effect in Saccharomyces cerevisiae. Mol Cell Biol 24:217–227PubMedCrossRefGoogle Scholar
  18. Jue CK, Lipke PN (2002) Role of Fig2p in agglutination in Saccharomyces cerevisiae. Eukaryot Cell 1:843–845PubMedCrossRefGoogle Scholar
  19. Kent NA, Karabetsou N, Politis PK, Mellor J (2001) In vivo chromatin remodeling by yeast ISWI homologs Isw1p and Isw2p. Genes Dev 15:619–626PubMedCrossRefGoogle Scholar
  20. Kron SJ, Gow NA (1995) Budding yeast morphogenesis: signalling, cytoskeleton and cell cycle. Curr Opin Cell Biol 7:845–855PubMedCrossRefGoogle Scholar
  21. Lipke PN, Kurjan J (1992) Sexual agglutination in budding yeasts: structure, function, and regulation of adhesion glycoproteins. Microbiol Rev 56:180–194PubMedGoogle Scholar
  22. Liu H, Styles CA, Fink GR (1993) Elements of the yeast pheromone response pathway required for filamentous growth of diploids. Science 262:1741–1744PubMedCrossRefGoogle Scholar
  23. Lo H-J, Kohler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR (1997) Nonfilamentous C. albicans Mutants Are Avirulent. Cell 90:939–949PubMedCrossRefGoogle Scholar
  24. Lo WS, Dranginis AM (1998) The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae. Mol Biol Cell 9:161–171PubMedGoogle Scholar
  25. Lorenz MC, Cutler NS, Heitman J (2000) Characterization of alcohol-induced filamentous growth in Saccharomyces cerevisiae. Mol Biol Cell 11:183–199PubMedGoogle Scholar
  26. Madhani HD, Styles CA, Fink GR (1997) MAP Kinases with distinct inhibitory functions impart signaling specificity during yeast differentiation. Cell 91:673–684PubMedCrossRefGoogle Scholar
  27. McConnell AD, Gelbart ME, Tsukiyama T (2004) Histone fold protein Dls1p is required for Isw2-dependent chromatin remodeling in vivo. Mol Cell Biol 24:2605–2613PubMedCrossRefGoogle Scholar
  28. Morohashi N, Yamamoto Y, Kuwana S, Morita W, Shindo H, Mitchell AP, Shimizu M (2006) Effect of sequence-directed nucleosome disruption on cell-type-specific repression by alpha2/Mcm1 in the yeast genome. Eukaryot Cell 5:1925–1933PubMedCrossRefGoogle Scholar
  29. Paliwal S, Iglesias PA, Campbell K, Hilioti Z, Groisman A, Levchenko A (2007) MAPK-mediated bimodal gene expression and adaptive gradient sensing in yeast. Nature 446:46–51PubMedCrossRefGoogle Scholar
  30. Roberts CJ, Nelson B, Marton MJ, Stoughton R, Meyer MR, Bennett HA, He YD, Dai H, Walker WL, Hughes TR, Tyers M, Boone C, Friend SH (2000) Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science 287:873–880PubMedCrossRefGoogle Scholar
  31. Roberts RL, Fink GR (1994) Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growth. Genes Dev 8:2974–2985PubMedCrossRefGoogle Scholar
  32. Rothstein R (1991) Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol 194:281–301PubMedGoogle Scholar
  33. Ruiz C, Escribano V, Morgado E, Molina M, Mazon MJ (2003) Cell-type-dependent repression of yeast a-specific genes requires Itc1p, a subunit of the Isw2p-Itc1p chromatin remodelling complex. Microbiology 149:341–351PubMedCrossRefGoogle Scholar
  34. Rupp S, Summers E, Lo HJ, Madhani H, Fink G (1999) MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. Embo J 18:1257–1269PubMedCrossRefGoogle Scholar
  35. Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, Braisted J, Klapa M, Currier T, Thiagarajan M, Sturn A, Snuffin M, Rezantsev A, Popov D, Ryltsov A, Kostukovich E, Borisovsky I, Liu Z, Vinsavich A, Trush V, Quackenbush J (2003) TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34:374–378PubMedGoogle Scholar
  36. Sugiyama M, Nikawa J (2001) The Saccharomyces cerevisiae Isw2p-Itc1p complex represses INO1 expression and maintains cell morphology. J Bacteriol 183:4985–4993PubMedCrossRefGoogle Scholar
  37. Trachtulcova P, Frydlova I, Janatova I, Dorosh A, Hasek J (2003) The W303 genetic background affects the isw2 delta mutant phenotype in Saccharomyces cerevisiae. Folia Microbiol (Praha) 48:745–753CrossRefGoogle Scholar
  38. Trachtulcova P, Frydlova I, Janatova I, Hasek J (2004) The absence of the Isw2p-Itc1p chromatin-remodelling complex induces mating type-specific and Flo11p-independent invasive growth of Saccharomyces cerevisiae. Yeast 21:389–401PubMedCrossRefGoogle Scholar
  39. Tsukiyama T, Palmer J, Landel CC, Shiloach J, Wu C (1999) Characterization of the imitation switch subfamily of ATP-dependent chromatin-remodeling factors in Saccharomyces cerevisiae. Genes Dev 13:686–697PubMedGoogle Scholar
  40. Zaragoza O, Gancedo JM (2000) Pseudohyphal growth is induced in Saccharomyces cerevisiae by a combination of stress and cAMP signalling. Antonie Van Leeuwenhoek 78:187–194PubMedCrossRefGoogle Scholar
  41. Zhang M, Bennett D, Erdman SE (2002) Maintenance of mating cell integrity requires the adhesin Fig2p. Eukaryot Cell 1:811–822PubMedCrossRefGoogle Scholar
  42. Zhang Z, Reese JC (2004) Ssn6-Tup1 requires the ISW2 complex to position nucleosomes in Saccharomyces cerevisiae. Embo J 23:2246–2257PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Ivana Frýdlová
    • 1
  • Marek Basler
    • 1
  • Pavla Vašicová
    • 1
  • Ivana Malcová
    • 1
  • Jiří Hašek
    • 1
  1. 1.Institute of Microbiology of AS CR, v.v.iPrague 4Czech Republic

Personalised recommendations