Current Genetics

, Volume 52, Issue 1, pp 35–44

Identification of quantitative trait loci affecting virulence in the basidiomycete Heterobasidion annosum s.l.

  • Mårten Lind
  • Kerstin Dalman
  • Jan Stenlid
  • Bo Karlsson
  • Åke Olson
Research Article


Identification of virulence factors of phytopathogens is important for the fundamental understanding of infection and disease progress in plants and for the development of control strategies. We have identified quantitative trait loci (QTL) for virulence on 1-year-old Pinus sylvestris and 2-year-old Picea abies seedlings and positioned them on a genetic linkage map of the necrotrophic phytopathogen Heterobasidion annosum sensu lato (s.l.), a major root rot pathogen on conifers. The virulence of 102 progeny isolates was analysed using two measurements: lesion lengths and fungal growth in sapwood from a cambial infection site. We found negative virulence effects of hybridization although this was contradicted on a winter-hardened spruce. On P. abies, both measurements identified several partially overlapping QTLs on linkage group (LG) 15 of significant logarithm of odds (LOD) values ranging from 2.31 to 3.85. On P. sylvestris, the lesion length measurement also identified a QTL (LOD 3.09) on LG 15. Moreover, QTLs on two separate smaller LGs, with peak LOD values of 2.78 and 4.58 were identified for fungal sapwood growth and lesion lengths, respectively. The QTL probably represent loci important for specific as well as general aspects of virulence on P. sylvestris and P. abies.


Forest pathogen JoinMap Genetic linkage map Pathogenicity Host specificity Root rot Conifer 


  1. Adomas A, Asiegbu FO (2007) Analysis of organ-specific responses of Pinus sylvestris to shoot (Gremmeniella abietina) and root (Heterobasidion annosum) pathogens. Physiol Mol Plant Pathol. doi:10.1016/j.pmpp.2007.04.001
  2. Albersheim P, Anderson-Prouty A (1975) Carbohydrates, proteins, cell surfaces and the biochemistry of pathogenesis. Annu Rev Plant Physiol 26:31–52CrossRefGoogle Scholar
  3. Anderson M, Kasuga T, Mitchelson K (1993) A partial physical karyotype of Heterobasidion annosum. In: Johansson M, Stenlid J (eds) Eighth international conference on root and butt rots. Wik, Sweden and Haikko, FinlandGoogle Scholar
  4. Asiegbu FO (2000) Adhesion and development of the root rot fungus (Heterobasidion annosum) on conifer tissues: effects of spore and host surface constituents. FEMS Microbiol 33:101–110CrossRefGoogle Scholar
  5. Asiegbu FO, Daniel G, Johansson M (1994) Defence related reactions of seedling roots of Norway spruce to infection by Heterobasidion annosum (Fr) Bref. Physiol Mol Plant Pathol 45:1–19CrossRefGoogle Scholar
  6. Asiegbu FO, Johansson M, Woodward S, Hüttermann A (1998) Biochemistry in the host–parasite interaction. In: Woodward S, Stenlid J, Karjalainen R, Hüttermann A (eds) Heterobasidion annosum; biology, ecology, impact and control. CAB International, Wallingford, pp 167–193Google Scholar
  7. Asiegbu FO, Adomas A, Stenlid J (2005) Conifer root and butt rot caused by Heterobasidion annosum (Fr) Bref. s. l. Mol Plant Pathol 6:395–409CrossRefPubMedGoogle Scholar
  8. Atkinson M (1993) Molecular mechanisms of pathogen recognition by plants. Adv Plant Pathol 10:35–64Google Scholar
  9. Capretti P, Korhonen K, Mugnai L, Romagnoli C (1990) An intersterility group of Heterobasidion annosum, specialized to Abies alba. Eur J Forest Pathol 20:231–240CrossRefGoogle Scholar
  10. Chase TE (1985) PhD Thesis, University of Vermont, BurlingtonGoogle Scholar
  11. Cumagun CJR, Bowden R, Jurgenson J, Leslie J, Miedaner T (2004) Genetic mapping of pathogenicity and aggressiveness of Gibberella zeae (Fusarium graminearum) toward wheat. Phytopathology 94:520–526CrossRefPubMedGoogle Scholar
  12. Dangl JL, Jones JD (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833PubMedCrossRefGoogle Scholar
  13. Falconer D (1989) Introduction to quantitative genetics, 3rd. Longman Group Limited, LondonGoogle Scholar
  14. Flor H (1971) Current status of the gene for gene concept. Annu Rev Phytopathol 9:275–296CrossRefGoogle Scholar
  15. Garbelotto M, Ratcliff A, Bruns TD, Cobb FW, Otrosina WJ (1996) Use of Taxon-specific competitive-priming PCR to study host specificity, hybridization, and intergroup gene flow in intersterility groups of Heterobasidion annosum. Phytopathology 86:543–551CrossRefGoogle Scholar
  16. Garbelotto M, Otrosina WJ Chapela IH, Gonthier P (2001) Studies on the ecology and genetics of hybridization in Heterobasidion. In: Laflamme G, Bérubé JA, Bussières G (eds) 10th international conference on root and butt rots, pp 238–244Google Scholar
  17. Garbelotto M, Gonthier P, Nicolotti G (2004) Assessing fitness of Heterobasidion F1 hybrids through inoculation experiments. In: Manka M, Lakomy P (eds) 11th international conference on root and butt rots, pp 255–260Google Scholar
  18. Gilchrist D (1998) Programmed cell death in plant disease: the purpose and promise of cellular suicide. Annu Rev Phytopathol 36:393–414PubMedCrossRefGoogle Scholar
  19. Greenberg J, Yao N (2004) The role and regulation of programmed cell death in plant–pathogen interactions. Cell Microbiol 6:201–211PubMedCrossRefGoogle Scholar
  20. Harrington T, Worrall JJ, Rizzo D (1989) Compatibility among host-specialized isolates of Heterobasidion annosum from western North America. Phytopathology 79:290–296Google Scholar
  21. Hawthorne B, Rees-George J, Bowen J, Ball R (1997) A single locus with a large effect on virulence in Nectria haematococca MPI. Fungal Genet Newsl 44:24–26Google Scholar
  22. Heath M (2000) Hypersensitive response-related death. Plant Mol Biol 44:321–334PubMedCrossRefGoogle Scholar
  23. Holz G, Coertze S, Williamson B (2004) The ecology of Botrytis on plant surfaces. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer, Dordrecht, pp 9–27Google Scholar
  24. Jiang R, Weide R, de Vondervoort P, Govers F (2006) Amplification generates modular diversity at an avirulence locus in the pathogen Phytophthora. Genome Res 16:827–840PubMedCrossRefGoogle Scholar
  25. Johansson M (1988) Pectic enzyme activity of spruce (S) and pine (P) strains of Heterobasidion annosum (Fr) Bref. Physiol Mol Plant Pathol 33:333–349CrossRefGoogle Scholar
  26. Johansson M, Lundgren L, Asiegbu FO (1994) Initial interactions in living bark and sapwood of conifers infected by root rot fungi. In: Aamlid D (ed) Proceedings from the SNS meetings in forest pathology. Biri, Norway, pp 12–16Google Scholar
  27. Johansson M, Denekamp M, Asiegbu FO (1999) Production and isozyme pattern of extracellular laccase in the S and P intersterility groups of the root pathogen Heterobasidion annosum. Mycol Res 103:365–371CrossRefGoogle Scholar
  28. Jones E (1994) Fungal adhesion. Mycol Res 98:961–981Google Scholar
  29. Karlsson J, Stenlid J (1991) Pectic isozyme profiles of the intersterility groups in Heterobasidion annosum. Mycol Res 95:531–536CrossRefGoogle Scholar
  30. Karlsson M, Olson Å, Stenlid J (2003) Expressed sequences from the basidiomycetous tree pathogen Heterobasidion annosum during early infection of scots pine. Fungal Genet Biol 39:51–59PubMedCrossRefGoogle Scholar
  31. Karlsson M, Stenlid J, Olson Å (2005) Identification of a superoxide dismutase gene from the conifer pathogen Heterobasidion annosum. Physiol Mol Plant Pathol 66:99–107CrossRefGoogle Scholar
  32. Knoche H, Duvick J (1987) The role of fungal toxins in plant disease. In: Pegg G, Ayres P (eds) Fungal infection of plants. Cambridge University Press, Cambridge, pp 158–191Google Scholar
  33. Korhonen K (1978) Intersterility groups of Heterobasidion annosum. Comm Inst For Fenn 94:1–25Google Scholar
  34. Korhonen K, Stenlid J (1998) Biology of Heterobasidion annosum. In: Woodward S, Stenlid J, Karjalainen R, Hüttermann A (eds) Heterobasidion annosum: biology, ecology, impact and control. CAB International. Wallingford, pp 43–70Google Scholar
  35. Kubisiak TL, Amerson HV, Nelson CD (2005) Genetic interaction of the fusiform rust fungus with resistance gene Fr1 in loblolly pine. Phytopathology 95:376–380CrossRefPubMedGoogle Scholar
  36. Lander ES, Botstein D (1988) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199Google Scholar
  37. Larraya LM, Idareta E, Arana D, Ritter E, Pisabarro AG, Ramirez L (2002) Quantitative trait loci controlling vegetative growth rate in the edible Basidiomycete Pleurotus ostreatus. Appl Environ Microbiol 68:1109–1114PubMedCrossRefGoogle Scholar
  38. Larraya LM, Alfonso M, Pisabarro AG, Ramirez L (2003) Mapping of genomic regions (quantitative trait loci) controlling production and quality in industrial cultures of the edible Basidiomycete Pleurotus ostreatus. Appl Environ Microbiol 69:3617–3625PubMedCrossRefGoogle Scholar
  39. Lind M, Olson Å, Stenlid J (2005) An AFLP-marker based genetic linkage map of Heterobasidion annosum locating intersterility genes. Fungal Genet Biol 42:519–527PubMedCrossRefGoogle Scholar
  40. Lindberg M, Johansson M (1991) Growth of Heterobasidion annosum through bark of Picea abies. Eur J Forest Pathol 21:377–388CrossRefGoogle Scholar
  41. Lyon GD, Goodman BA, Williamson B (2004) Botrytis cinerea perturbs redox strategies as an attack strategy in plants. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer, Dordrecht, pp 119–141Google Scholar
  42. Manocha M (1984) Cell surface characteristics of Mortierella and their interaction with a mycoparasite. Can J Microbiol 30:290–298Google Scholar
  43. Moquet F, Desmerger C, Mamoun M, Ramos-Guedes-Lafargue M, Olivier J-M (1999) A quantitative trait locus of Agaricus bisporus resistance to Pseudomonas tolaasii is closely linked to natural cap color. Fungal Genet Biol 28:34–42PubMedCrossRefGoogle Scholar
  44. Morel JB, Dangl J (1997) The hypersensitive response and the induction of cell death in plants. Cell Death Diff 4:671–683CrossRefGoogle Scholar
  45. Niemelä T, Korhonen K (1998) Taxonomy of the genus Heterobasidion. In: Woodward S, Stenlid J, Karjalainen R, Hüttermann A (eds) Heterobasidion annosum: biology, ecology, impact and control. CAB International. Wallingford, pp 27–33Google Scholar
  46. Olson Å (2006) Genetic linkage between growth rate and the intersterility genes S and P in the basidiomycete Heterobasidion annosum s.l. Mycol Res 110:979–984PubMedCrossRefGoogle Scholar
  47. Olson Å, Stenlid J (2001) Mitochondrial control of fungal hybrid virulence. Nature 411:438PubMedCrossRefGoogle Scholar
  48. Olson Å, Lind M, Stenlid J (2005) In vitro test of virulence in the progeny of a Heterobasidion interspecific cross. For Pathol 35:321–331Google Scholar
  49. Samils N, Elfstrand M, Lindner Czederpiltz D L, Fahleson J, Olson Å, Dixelius C, Stenlid S (2006) Development of a rapid and simple Agrobacterium tumefaciens-mediated transformation system for the fungal pathogen Heterobasidion annosum. FEMS Microbiol Lett 255:82–88PubMedCrossRefGoogle Scholar
  50. Siegee D (1993) Bacterial plant pathology; cell and molecular aspects. Cambridge University Press, Cambridge, pp 126–171Google Scholar
  51. Sierotzki H, Gessler C (1998) Genetic analysis of a cross of two Venturia inaequalis strains that differ in virulence. J Phytopathol 146:515–519Google Scholar
  52. Soanes DM, Talbot NJ (2006) Comparative genomic analysis of phytopathogenic fungi using expressed sequence tag (EST) collections. Mol Plant Pathol 7:61–71CrossRefPubMedGoogle Scholar
  53. Stenlid J (1985) Population structure of Heterobasidion annosum as determined by somatic incompatibility, sexual incompatibility and isoenzyme patterns. Can J Bot 63:2268–2273CrossRefGoogle Scholar
  54. Stenlid J, Karlsson J (1991) Partial intersterility in Heterobasidion annosum. Mycol Res 95:1153–1159Google Scholar
  55. Swedjemark G, Johannesson H, Stenlid J (1999) Intraspecific variation in Heterobasidion annosum for growth in sapwood of Picea abies and Pinus silvestris. Eur J Forest Pathol 29:249–258CrossRefGoogle Scholar
  56. Swedjemark G, Stenlid J, Karlsson B (2001) Variation in growth of Heterobasidion annosum among clones of Picea abies incubated for different periods of time. For Pathol 31:163–175Google Scholar
  57. Thrall PH, Burdon JJ (2003) Evolution of virulence in a plant host–pathogen metapopulation. Science 299:1735–1737PubMedCrossRefGoogle Scholar
  58. Van Ooijen J, Boer MP, Jansen RC, Maliepaard C (2002) MapQTL 4.0, Software for the calculation of QTL positions on genetic maps. Plant Research International, Wageningen, the NeterlandsGoogle Scholar
  59. Vinatzer B, Patocchi A, Gianfranceschi L, Tartarini S, Zhang H, Gessler C, Sansavini S (2001) Apple contains receptor-like genes homologous to the Cladosporium fulvum resistance gene family of tomato with a cluster of genes cosegregating with Vf apple scab resistance. Mol Plant Microbe Interact 14:508–515PubMedCrossRefGoogle Scholar
  60. Welz H, Leonard K (1994) Genetic analysis of two race 0 X race 2 crosses in Cochliobolus carbonum. Phytopathology 84:83–91CrossRefGoogle Scholar
  61. Wilcox PL, Amerson HV, Kuhlman EG, Liu BH, OMalley DM, Sederoff RR (1996) Detection of a major gene for resistance to fusiform rust disease in loblolly pine by genomic mapping. PNAS 93:3859–3864PubMedCrossRefGoogle Scholar
  62. Wolpert T, Dunkle L, Ciuffetti LM (2002) Host-selective toxins and avirulence determinants: What’s in a name? Annu Rev Phytopathol 40:251–285PubMedCrossRefGoogle Scholar
  63. Woodward S, Stenlid J, Karjalainen R, Hûttermann A (1998) Heterobasidion annosum. Biology, ecology, impact and control. CAB International, CambridgeGoogle Scholar
  64. Zhan J, Mundt CC, Hoffer ME, McDonald BA (2002) Local adaptation and effect of host genotype on the rate of pathogen evolution: an experimental test in a plant pathosystem. J Evol Biol 15:634–647CrossRefGoogle Scholar
  65. Zhong S, Steffenson BJ (2002) Identification and characterization of DNA markers associated with a locus conferring virulence on barley in the plant pathogenic fungus Cochliobolus sativus. Theor Appl Genet 104:1049–1054PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Mårten Lind
    • 1
  • Kerstin Dalman
    • 1
  • Jan Stenlid
    • 1
  • Bo Karlsson
    • 2
  • Åke Olson
    • 1
  1. 1.Department of Forest Mycology and PathologySwedish University of Agricultural SciencesUppsalaSweden
  2. 2.SkogforskEkeboSvalövSweden

Personalised recommendations