Current Genetics

, Volume 51, Issue 6, pp 377–392 | Cite as

Phylogeny and evolution of mating-type genes from Pyrenophora teres, the causal agent of barley “net blotch” disease

  • D. Rau
  • G. Attene
  • A. H. D. Brown
  • L. Nanni
  • F. J. Maier
  • V. Balmas
  • E. Saba
  • W. Schäfer
  • R. PapaEmail author
Research Article


The main aim of this study was to test the patterns of sequence divergence and haplotype structure at the MAT locus of Pyrenophora teres, the causal agent of barley ‘net blotch’ disease. P. teres is a heterothallic ascomycete that co-occurs in two symptomatological forms, the net form (NF) and the spot form (SF). The mating-type genes MAT1-1-1 and MAT1-2-1 were sequenced from 22 NF isolates (12 MAT1-1-1 and 10 MAT1-2-1 sequences) and 17 SF isolates (10 MAT1-1-1 and seven MAT1-2-1 sequences) collected from Sardinian barley landrace populations and worldwide. On the basis of a parsimony network analysis, the two forms of P. teres are phylogenetically separated. More than 85% of the total nucleotide variation was found between formae speciales. The two forms do not share any polymorphisms. Six diagnostic nucleotide polymorphisms were found in the MAT1-1-1 intron (1) and in the MAT1-1-1 (3) and MAT1-2-1 (2) exons. Three diagnostic non-synonymous mutations were found, one in MAT1-1-1 and two in MAT1-2-1. For comparison with P. teres sequence data, the mating-type genes from Pyrenophora graminea were also isolated and sequenced. Divergence between P. graminea and P. teres is of a similar magnitude to that between NF and SF of P. teres. The MAT genes of P. graminea were closer to those of SF than to NF, with the MAT1-2-1 SF peptide not different from the MAT1-2-1 peptide of P. graminea. Overall, these data suggest long genetic isolation between the two forms of P. teres and that hybridization is rare or absent under field conditions, with each form having some particular niche specialization. This indicates that research on resistance to P. teres should consider the two forms separately, as different species.


Pyrenophora teres Pyrenophora graminea Mating types Recombination Haplotypes network Hordeum vulgare 



The authors would like to dedicate this work to Dr. Giovanni Delogu. We thank Dr. C.L. Brubaker and A. Becerra Lopez-Lavallé for comments on a earlier version of the manuscript.


  1. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389-3402PubMedCrossRefGoogle Scholar
  2. Arie T, Christiansen SK, Yoder OC, Turgeon BG (1997) Efficient cloning of ascomycete mating-type genes by PCR amplification of the conserved MAT HMG box. Fungal Genet Biol 21:118–130CrossRefPubMedGoogle Scholar
  3. Attene G, Ceccarelli S, Papa R (1996) The barley (Hordeum vulgare L) of Sardinia, Italy. Genet Res Crop Evol 43:385–393Google Scholar
  4. Avise JC, Ball RM (1990) Principles of genealogical concordance in species concepts and biological taxonomy. In: Futuyuma D, Antonovics J (eds) Surveys in evolutionary biology. Oxford University Press, Oxford, pp 45–67Google Scholar
  5. Baayen RP, O’Donnel K, Bonants PJ, Cigelnik E, Kroon LPNM, Roebroeck EJA, Waalwijk C (2000) Gene genealogies and AFLP analyses in the Fusarium oxysporum complex identify monophyletic and non-mono-phyletic formae speciales causing wilt and rot disease. Phytopathology 90:891–900CrossRefPubMedGoogle Scholar
  6. Bakonyi J, Justesen AF (2006) Genetic relationship of P graminea, P teres f maculata and P teres f teres assessed by RAPD analysis. J Phytopathol 154:1–8CrossRefGoogle Scholar
  7. Barve MP, Arie T, Salimath SS, Muehlbauer FJ, Peever TL (2003) Cloning and characterization of the mating-type (MAT) locus from Ascochyta rabiei (teleomorph: Dydymella rabiei) and a MAT phylogeny of legume associated Ascochyta spp. Fungal Genet Biol 39:151–167PubMedCrossRefGoogle Scholar
  8. Bates JA, Taylor EJA (2001) Scorpion ARMS primers for SNP real-time PCR detection and quantification of Pyrenophora teres. Mol Plant Pathol 2:275–280CrossRefPubMedGoogle Scholar
  9. Bennet RS, Yun SH, Lee TY, Turgeon BG, Arseniuk E, Cunfer BM, Bergstrom GC (2003) Identity and conservation of mating-type genes in geographically diverse isolates of Phaeosphaeria nodorum. Fungal Genet Biol 40:25–37CrossRefGoogle Scholar
  10. Bishop JG, Dean AM, Mitchell-Olds T (2000) Rapid evolution in plant chitinases: molecular targets of selection in plant-pathogen co-evolution. Proc Natl Acad Sci USA 97:5322–5327PubMedCrossRefGoogle Scholar
  11. Campbell GF, Lucas JA, Crous PW (2002) Evidence of recombination between net- and spot-type populations of Pyrenophora teres as determined by RAPD analysis. Mycol Res 106:602–608CrossRefGoogle Scholar
  12. Campbell GF, Crous PW, Lucas JA (1999) Pyrenophora teres f maculata, the cause of Pyrenophora leaf spot of barley in South Africa. Mycol Res 103:257–267CrossRefGoogle Scholar
  13. Civetta A, Rajakumar SA, Brouwers B, Bacik JP (2005) Rapid evolution and gene-specific patterns of selection for three genes of spermatogenesis in Drosophila. Mol Biol Evol 23:655–662PubMedCrossRefGoogle Scholar
  14. Clement M, Posada D, Crandall KA (2000) TCS: s computer program to estimate gene genealogies. Mol Ecol 9:1657–1659PubMedCrossRefGoogle Scholar
  15. Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mithocondrial DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  16. Ferris PJ, Goodenough UW (1994) The mating-type locus of Chlamydomonas reinhardtii contains highly rearranged DNA sequences. Cell 76:1135–1145PubMedCrossRefGoogle Scholar
  17. Friesen TL, Faris JD, Lai Z Steffenson BJ (2006) Identification of chromosomal location of major genes for resistance to Pyrenophora teres in a doubled-haploid barley population. Genome 49:855–859PubMedCrossRefGoogle Scholar
  18. Forsdyke DR (2000) Haldane’s rule: hybrid sterility affects the heterogametic sex first because sexual differentiation is on the path to species differentiation. J Theor Biol 204:443–452PubMedCrossRefGoogle Scholar
  19. Geiser DM, Pitt JI, Taylor JW (1998) Cryptic speciation and recombination in the aflatoxin-producing fungus Aspergillus flavus. Proc Natl Acad Sci USA 95:388–393PubMedCrossRefGoogle Scholar
  20. Gilad Y, Rosenberg S, Przeworski M, Lancet D, Skorecki K (2002) Evidence for positive selection and population structure at the human MAO-A gene. Proc Natl Acad Sci USA 99:862–867PubMedCrossRefGoogle Scholar
  21. Golding GB, Dean AM (1998) The structural basis of molecular adaptation. Mol Biol Evol 15:355–369PubMedGoogle Scholar
  22. Goodwin SB, Waalwijk C, Kema GH, Cavaletto JR, Zhang G (2003) Cloning and analysis of the mating-type idiomorphs from the barley pathogen Septoria passerinii. Mol Gen Genomics 269:1–12Google Scholar
  23. Hey J (1991) The structure of genealogies and the distribution of fixed differences between DNA sequence samples from natural populations. Genetics 128:831–840PubMedGoogle Scholar
  24. Hudson RR (1996) Molecular population genetics of adaptation. In: Rose MR, Lauder GV (eds) Adaptation. Academic, New YorkGoogle Scholar
  25. Hudson RR (2000) A new statistic for detecting differentiation. Genetics 155:2011–2014PubMedGoogle Scholar
  26. Ironside JE, Filatov DA (2005) Extreme population structure and high interspecific divergence of the Silene Y chromosome. Genetics 171:705–713PubMedCrossRefGoogle Scholar
  27. Jeon JJ, Kim H, Kim HS, Zeller KA, Lee T, Yun SH, Bowden RL, Leslie JF, Lee YW (2003) Genetic diversity of Fusarium graminearum from maize in Korea. Fugal Genet Newslett 50:142Google Scholar
  28. Jordan JWL, Best GR, Allen EC (1985) Effect of Pyrenophora teres on dry matter production and yield component on winter barley. Plant Pathol 34:200–206CrossRefGoogle Scholar
  29. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic, New York, pp 45–67Google Scholar
  30. Kasuga T, Taylor JW, White TJ (1999) Phylogenetic relationships of varieties and geographical groups of the human pathogenic fungus Histoplasma capsulatum. Darling J Clin Microbiol 37:653–663Google Scholar
  31. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, New YorkGoogle Scholar
  32. Koufopanou V, Burt A, Taylor JW (1997) Concordance of gene genealogies reveals reproductive isolation in the pathogenic fungus Coccidioides immitis. Proc Natl Acad Sci USA 94:5478–5482PubMedCrossRefGoogle Scholar
  33. Koufopanou V, Burt A, Szaro T, Taylor JW (2001) Gene genealogies, cryptic species and molecular evolution in the human pathogen Coccidioides immitis and relatives (Ascomycota, Onygenales). Mol Biol Evol 18:1246–1258PubMedGoogle Scholar
  34. Kronstad JW, Staben C (1997) Mating type in filamentous fungi. Annu Rev Genet 31:245–276PubMedCrossRefGoogle Scholar
  35. Kumar S, Nei M (2001) Molecular evolution and phylogenetics. Oxford University Press, New YorkGoogle Scholar
  36. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163PubMedCrossRefGoogle Scholar
  37. Lehninger AH (1975) Biochemistry, 2nd edn. Worth publishers, New YorkGoogle Scholar
  38. Leisova L, Kucera L, Minarikova V, Ovesna J (2005a) AFLP-based PCR markers that differentiate spot and net forms of Pyrenophora teres. Plant Pathol 54:66–73CrossRefGoogle Scholar
  39. Leisova L, Minarikova V, Kucera L, Ovesna J (2005b) Genetic diversity of Pyrenophora teres isolates as detected by AFLP analysis. J Phytopathol 54:66–73Google Scholar
  40. Lin JZ, Brown AHD, Clegg MT (2001) Heterogeneous geographic patterns of nucleotide sequence diversity between two alcohol dehydrogenase genes in wild barley (Hordeum vulgare subspecies spontaneum) Proc Natl Acad Sci USA 98:531–536PubMedCrossRefGoogle Scholar
  41. May G, Shaw F, Badrane H, Vekemans X (1999) The signature of balancing section: fungal mating compatibility gene evolution. Proc Natl Acad Sci USA 96:9172–9177PubMedCrossRefGoogle Scholar
  42. McDonald WC (1967) Variability and inheritance of morphological mutants in Pyrenophora teres. Phytopathology 57:747–755Google Scholar
  43. McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652–654PubMedCrossRefGoogle Scholar
  44. Metz EC, Palumbi SR (1996) Positive selection and rearrangements generate extensive polymorphism in the gamete recognition protein binding. Mol Biol Evol 13:397–406PubMedGoogle Scholar
  45. Migheli Q, Friard O, Del Tedesco D, Musso MR (1996) Stability of transformed antagonistic Fusarium oxysporum strains in vitro and in soil microcosms. Mol Ecol 5:641–649Google Scholar
  46. Nachman MW, Boyer SN, Aquadro CF (1994) Nonneutral evolution at the mitochondrial NADH dehydrogenase subunit 3 in mice. Genetics 91:6464–6368Google Scholar
  47. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  48. Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous substitutions. Mol Biol Evol 3:418–426PubMedGoogle Scholar
  49. Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273PubMedCrossRefGoogle Scholar
  50. Ngai J, Dowling MM, Buck L, Axel R, Chess A (1993) The family of genes encoding odorant receptors on the channel catfish. Cell 72:657–666PubMedCrossRefGoogle Scholar
  51. O’Donnell K, Ward TJ, Geiser DM, Kistler HC, Aoki T (2004) Genealogical concordance between the mating-type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum. clade Fungal Genet Biol 41:600–623PubMedCrossRefGoogle Scholar
  52. Papa R, Attene G, Barcaccia G:, Ohgata A, Konishi T (1998) Genetic diversity in landrace populations of Hordeum vulgare L from Sardinia, Italy, as revealed by RAPDs, isozymes and morphophenological traits. Plant Breed 117:523–530CrossRefGoogle Scholar
  53. Peever TL, Milgroom MG (1994) Genetic structure of Pyrenophora teres populations determined with random amplified polymorphic DNA markers. Can J Bot 72:915–923Google Scholar
  54. Platenkamp R (1976) Investigations on the infection pathway of Drechslera graminea in germinating barley. Royal Vet Agric Univ Yearbook 1976, Copenhagen, Denmark, pp 49–64Google Scholar
  55. Pöggeler S (2001) Mating-type genes for classical strain improvements of ascomycetes. Appl Micorbiol Biotechnol 56:589–601CrossRefGoogle Scholar
  56. Porta-Puglia AG, Delogu G, Vannacci G (1986) Pyrenophora graminea on winter barley seed: effect on disease incidence and yield losses. J Phytopathol 117:26–33Google Scholar
  57. Posada D, Crandall KA, Templeton AR (2000) GEODIS. Mol Ecol 9:487–488PubMedCrossRefGoogle Scholar
  58. Rand D, Kann LM (1996) Excess amino acid polymorphism in mitochondrial DNA: contrasts among genes from Drosophila, mice, and humans. Mol Biol Evol 13:735–748PubMedGoogle Scholar
  59. Rau D, Brown AHD, Brubaker CL, Attene G, Balmas V, Saba E, Papa R (2003) Population genetic structure of Pyrenophora teres Drechs the causal agent of net blotch in Sardinian landraces of barley (Hordeum vulgare L). Theor Appl Genet 106:947–959PubMedGoogle Scholar
  60. Rau D, Maier FJ, Papa R, Brown AHD, Balmas V, Saba E, Schafer W, Attene G (2005) Isolation and characterization of the mating-type locus of the barley pathogen Pyrenophora teres and frequencies of mating-type idiomorphs within and among fungal populations collected from barley landraces. Genome 48:855–869PubMedGoogle Scholar
  61. Rosen DE (1978) Vicariant pattern and historical explanation in biogeography Syst Zool 27:159–188CrossRefGoogle Scholar
  62. Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DNAsp, DNA polymorphism analysis by the coalescent and other methods. Bioinformatics 19:2496–2497PubMedCrossRefGoogle Scholar
  63. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Springs HarborGoogle Scholar
  64. Schneider S, Kueffer JM, Roessli D, Excoffier L (1997) ARLEQUIN: a software for population genetic data analysis, Version 2000. University of Geneva, GenevaGoogle Scholar
  65. Schurch S, Linde CC, Knogge W, Jackson LF, McDonald BA (2004) Molecular population genetic analysis differentiates two virulence mechanisms of the fungal avirulence gene. NIP1 Mol Plant-Microbe Int 10:1114–1125Google Scholar
  66. Serenius M, Mironenko N, Manninen O (2005) Genetic variation, occurrence of mating types and different forms of Pyrenophora teres causing the net blotch of barley in Finland. Mycol Res 109:809–817PubMedCrossRefGoogle Scholar
  67. Sharon A, Yamaguchi K, Christiansen S, Horwitz BA, Yoder OC, Turgeon BG (1996) An asexual fungus has the potential for sexual development. Mol Gen Genet 251:60–68PubMedCrossRefGoogle Scholar
  68. Shipton WA (1973) Net blotch of barley. Rev Plant Path 52:269–290Google Scholar
  69. Shoemaker RA (1962) Drechslera Ito. Can J Bot 40:809–836CrossRefGoogle Scholar
  70. Sivanesan A (1987) Graminicolous species of Bipolaris, Curvularia, Drechslera, Exserohilum and their teleomorphs. Mycol Pap 158:1–261Google Scholar
  71. Smedegård-Petersen V (1971) Pyrenophora teres fsp maculata f nov and Pyrenophora teres f teres on barley in Denmark. Royal Veterinary and Agricultural University, Copenhagen, pp 124–144Google Scholar
  72. Smedegård-Petersen V (1976) Pathogenesis and genetics of net-spot blotch and leaf stripe of barley caused by Pyrenophora teres and Pyrenophora graminea. DSR Verlag, Royal Veterinary and Agricultural University, Copenhagen, pp 1–76Google Scholar
  73. Smedegård-Petersen V (1983) Cross fertility and genetic relationship between Pyrenophora teres and P. graminea the cause of net blotch and leaf stripe on barley. Seed Sci Technol 11:673–680Google Scholar
  74. Sokal R, Rohlf JF (1981) Biometry, 2nd edn. Freeman WH, San FranciscoGoogle Scholar
  75. Steffenson BJ, Webster RK, Jackson LF (1991) Reduction in yield loss using incomplete resistance to P. teres f sp. teres in barley. Plant Dis 75:96–100CrossRefGoogle Scholar
  76. Stevens EA, Blakemore EJA, Reeves JC (1998) Relationships amongst isolates of Pyrenophora spp based on the sequences of the ribosomal DNA spacer regions. Mol Plant Path Online http://www.bspporguk/mppol/1998/1111stevens
  77. Swanson WJ, Vacquier VD (1995) Extraordinary divergence and positive Darwinian selection in a fusagenic protein coating the acrosomal process of abalone spermatozoa. Proc Natl Acad Sci USA 92:4957–4961PubMedCrossRefGoogle Scholar
  78. Tajima F (1983) Evolutionary relationship of DNA sequences in finite populations. Genetics 105:437–460PubMedGoogle Scholar
  79. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedGoogle Scholar
  80. Taylor EJ, Kostantinova P, Leigh F, Bates JA, Lee D (2004) Gypsy-like retrotransposons in Pyrenophora: an abundant and informative class of molecular markers. Genome 47:519–525PubMedCrossRefGoogle Scholar
  81. Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbet DS, Fisher MC (2000) Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol 31:21–32PubMedCrossRefGoogle Scholar
  82. Templeton AR (1998) Nested clade analysis of phylogeographic data: testing hypothesis about gene flow and population history. Mol Ecol 7:381–397PubMedCrossRefGoogle Scholar
  83. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  84. Turgeon BG (1998) Application of mating-type gene technology to problems in fungal biology. Annu Rev Phytopathol 36:115–137PubMedCrossRefGoogle Scholar
  85. Turgeon BG, Yoder OC (2000) Proposed nomenclature for mating-type genes of filamentous Ascomycetes. Fungal Genet Biol 31:1–5PubMedCrossRefGoogle Scholar
  86. Ueng PP, Dai Q, Cui K, Czembor PC, Cunfer BM, Tsang H, Arseniuk E, Bergstrom GG (2003) Sequence diversity of mating-type genes in Phaeosphaeria avenaria. Curr Genet 43:121–130PubMedGoogle Scholar
  87. Van de Peer Y, De Wachter R (1994) TREECON for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Com Appl Biol 10:569–570Google Scholar
  88. Weinreich DM, Rand DM (2000) Contrasting patterns of non-neutral evolution in proteins encoded in nuclear and mitochondrial genomes. Genetics 156:385–399PubMedGoogle Scholar
  89. Williams KJ, Smyl C, Lichon A, Wong KJ, Wallwork H (2001) Development and use of an assay based on the polymerase chain reaction that differentiates the pathogens causing spot form and the net form of net blotch of barley. Australas Plant Pathol 30:37–44CrossRefGoogle Scholar
  90. Wirsel S, Horwitz B, Yamaguchi K, Yoder OC, Turogeon BG (1998) Both mating and fertility are controlled by single mating type-specific genes at the Cochliobolus heterostrophus MAT locus. Mol Gen Genet 259:272–281PubMedCrossRefGoogle Scholar
  91. Yun SH, Berbee ML, Yoder OC, Turgeon BG (1999) Evolution of the fungal self-fertile reproductive life-style from self-sterile ancestors. Proc Natl Acad Sci USA 96:5592–5597PubMedCrossRefGoogle Scholar
  92. Yun SH, Arie T, Kaneko I, Yoder OC, Turgeon BG (2000) Molecular organization of mating-type loci in heterothallic, homothallic, and asexual Gibberella/Fusarium species. Fungal Genet Biol 31:7–20PubMedCrossRefGoogle Scholar
  93. Zhang J, Kumar S, Nei M (1997) Small-sample tests of episodic adaptive evolution: a case study of primate lysozymes. Mol Biol Evol 14:1335–1338PubMedGoogle Scholar
  94. Zhang G, Berbee ML (2001) Pyrenophora phylogenetics inferred from ITS and glyceraldeyde 3-phosphate deydrogenase gene regions. Mycologia 93:1048–1063CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • D. Rau
    • 1
  • G. Attene
    • 2
  • A. H. D. Brown
    • 3
  • L. Nanni
    • 1
  • F. J. Maier
    • 4
  • V. Balmas
    • 5
  • E. Saba
    • 2
  • W. Schäfer
    • 4
  • R. Papa
    • 1
    Email author
  1. 1.Dipartimento di Scienze degli Alimenti, Facoltà di AgrariaUniversità Politecnica delle MarcheAnconaItaly
  2. 2.Dipartimento di Scienze Agronomiche e Genetica Vegetale Agraria, Center for Biotechnology Development and Biodiversity ResearchUniversità degli Studi di SassariSassariItaly
  3. 3.Centre for Plant Biodiversity ResearchCSIRO Plant IndustryCanberraAustralia
  4. 4.Department of Applied Molecular Biology of Plants III (AMPIII), Institute of General BotanyUniversität HamburgHamburgGermany
  5. 5.Dipartimento di Protezione delle Piante, Center for Biotechnology Development and Biodiversity ResearchUniversità degli Studi di SassariSassariItaly

Personalised recommendations