Current Genetics

, Volume 50, Issue 3, pp 183–191 | Cite as

Insertion mutagenesis of the yeast Candida famata (Debaryomyces hansenii) by random integration of linear DNA fragments

  • Kostyantyn V. Dmytruk
  • Andriy Y. Voronovsky
  • Andriy A. SibirnyEmail author
Research Article


The feasibility of using random insertional mutagenesis to isolate mutants of the flavinogenic yeast Candida famata was explored. Mutagenesis was performed by transformation of the yeast with an integrative plasmid containing the Saccharomyces cerevisiae LEU2 gene as a selective marker. The addition of restriction enzyme together with the plasmid (restriction enzyme-mediated integration, REMI) increased the transformation frequency only slightly. Integration of the linearized plasmid occurred randomly in the C. famata genome. To investigate the potential of insertional mutagenesis, it was used for tagging genes involved in positive regulation of riboflavin synthesis in C. famata. Partial DNA sequencing of tagged genes showed that they were homologous to the S. cerevisiae genes RIB1, MET2, and SEF1. Intact orthologs of these genes isolated from Debaryomyces hansenii restored the wild phenotype of the corresponding mutants, i.e., the ability to overproduce riboflavin under iron limitation. The Staphylococcus aureus ble gene conferring resistance to phleomycin was used successfully in the study as a dominant selection marker for C. famata. The results obtained indicate that insertional mutagenesis is a powerful tool for tagging genes in C. famata.


Insertional mutagenesis Gene tagging Yeast Riboflavin Candida famata 



We are grateful to Dr. Meg Woolfit (Trinity College, University of Dublin, Ireland) for critical reading of the manuscript.


  1. Barth C, Fraser DJ, Fisher PR (1998) A rapid, small-scale method for characterization of plasmid insertions in the Dictyostelium genome. Nucleic Acids Res 26:3317–3318PubMedCrossRefGoogle Scholar
  2. Bölker M, Genin S, Lehmler C, Kahmann R (1995) Genetic regulation of mating and dimorphism in Ustilago maydis. Can J Bot 73:320–325CrossRefGoogle Scholar
  3. Cowart RE, Marquardt MP, Foster BG (1980) The removal of iron and other trace elements from a complex bacteriological medium. Microbiol Lett 13:117–122Google Scholar
  4. Demain AL (1972) Riboflavin oversynthesis. Annu Rev Microbiol 26:369–388PubMedCrossRefGoogle Scholar
  5. Dmytruk K, Abbas C, Voronovsky A, Kshanovska B, Sybirna K, Sibirny A (2004) Cloning of structural genes involved in riboflavin synthesis of the yeast Candida famata. Ukr Biokhim Zh 76:78–87PubMedGoogle Scholar
  6. Brown DH, Slobodkin IV, Kumamoto CA (1996) Stable transformation and regulated expression of an inducible reporter construct in Candida albicans using restriction enzyme-mediated integration. Mol Gen Genet 251:75–80PubMedCrossRefGoogle Scholar
  7. Fedorovich D, Protchenko O, Lesuisse E (1999) Iron uptake by the yeast Pichia guilliermondii. Flavinogenesis and reductive iron assimilation are co-regulated processes. Biometals 12(4):295–300PubMedCrossRefGoogle Scholar
  8. Granado JD, Kertesz-Chaloupkova K, Aebi M, Kues U (1997) Restriction enzyme-mediated DNA integration in Coprinus cinereus. Mol Gen Genet 256:28–36PubMedCrossRefGoogle Scholar
  9. Groom KR, Heyman HC, Steffen MC, Hawkins L, Martin NC (1998) Kluyveromyces lactis SEF1 and its Saccharomyces cerevisiae homologue bypass the unknown essential function, but not the Mitochondrial RNase P function, of the S. cerevisiae RPM2 Gene. Yeast 14:77–87PubMedCrossRefGoogle Scholar
  10. Heefner DL, Boyts A, Burdzinski L, Yarus M (1993) Efficient ribofavin production with yeast. United States Patent No. 5231007Google Scholar
  11. Heefner DL, Weaver CA, Yarus MJ, Burdzinski LA, Gyure DC, Foster EW (1988) Ribofavin producing strains of microorganisms, method for selecting, and method for fermentation. Patent WO 88/09822Google Scholar
  12. Kang S, Metzenberg RL (1993) Insertional mutagenesis in Neurospora crassa: cloning and molecular analysis of the preg1 gene controlling the activity of the transcriptional activator NUC-1. Genetics 133:193–202PubMedGoogle Scholar
  13. Knight SA, Lesuisse E, Stearman R, Klausner RD, Dancis A (2002) Reductive iron uptake by Candida albicans: role of copper, iron and the TUP1 regulator. Microbiology 148:29–40PubMedGoogle Scholar
  14. Kuspa A, Loomis WF (1992) Tagging developmental genes in Dictyostelium by restriction enzyme-mediated integration of plasmid DNA. Proc Natl Acad Sci USA 89:8803–8807PubMedCrossRefGoogle Scholar
  15. Langin T, Faugeron G, Goyon C, Nicolas A, Rossignol JL (1986) The MET2 gene of Saccharomyces cerevisiae: molecular cloning and nucleotide sequence. Gene 49(3):283–293PubMedCrossRefGoogle Scholar
  16. Lépingle A, Casaregola S, Neuveglise C, Bon E, Nguyen H-V, Artiguenave F, Wincker P, Gaillardin C (2000) Genomic exploration of the hemiascomycetous yeasts: 14. Debaryomyces hansenii var. hansenii. FEBS Lett 487:82–86PubMedCrossRefGoogle Scholar
  17. Parajo JC, Dominguez H, Dominguez JM (1996) Production of xylitol from concentrated wood hydrolysates by Debaryomyces hansenii: effect of the initial cell concentration. Biotechnol Lett 18:593–598CrossRefGoogle Scholar
  18. Roseiro JC, Peito MA, Girio FM, Amaral-Collaco MT (1991) The effects of the oxygen transfer coefficient and substrate concentration on the xylose fermentation by Debaryomyces hansenii. Arch Microbiol 156:484–90Google Scholar
  19. Sambrook J, Fritsh EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  20. Sanchez O, Navarro RE, Aguirre J (1998) Increased transformation frequency and tagging of developmental genes in Aspergillus nidulans by restriction enzyme-mediated integration (REMI). Mol Gen Genet 258:89–94PubMedCrossRefGoogle Scholar
  21. Schiestl RH, Petes TD (1991) Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 88:7585–7589PubMedCrossRefGoogle Scholar
  22. Semon D, Rao Movva N, Smith TF, Mohamed El Alama, Davies J (1987) Plasmid-determined bleomycin resistance in Staphylococcus aureus. Plasmid 17:46–53PubMedCrossRefGoogle Scholar
  23. Shavlovskii GM, Babiak LI, Sibirnyi AA, Logvinenko EM (1985) Genetic control of riboflavin biosynthesis in Pichia guilliermondii yeasts. The detection of a new regulator gene RIB81. Genetika 21:368–374 (in Russian)Google Scholar
  24. Shavlovskii GM, Fedorovich DV, Kutsiaba VI, Babyak LY, Stenchuk MM (1992) Participation of RIB80 gene in regulation of riboflavin biosynthesis and iron transport in yeast Pichia guilliermonlii. Genetika 28:25–32 (in Russian)Google Scholar
  25. Shavlovsky GM, Logvinenko EM (1988) Flavin overproduction and its molecular mechanisms in microorganisms. Prikl Biokhim Mikrobiol 24:435–447 (in Russian)Google Scholar
  26. Shavlovsky GM, Zharova VP, Shchelokova IF, Trach VM, Sibirny AA, Ksheminskaya GP (1978) Flavinogenic activity of natural strains of the yeast Pichia guilliermondii. Prikl Biokhim Mikrobiol 14:184–189 (in Russian)Google Scholar
  27. Sibirny AA (1996) Pichia guilliermondii. In: Wolf K (ed) Nonconventional yeast in biotechnology. Springer, Berlin, pp 255–275Google Scholar
  28. Stahmann K-P, Revuelta JL, Seulberger H (2000) Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical ribofavin production. Appl Microbiol Biotechnol 53:509–516PubMedCrossRefGoogle Scholar
  29. Sweigard JA, Carroll AM, Farrall L, Chumley FG, Valent B (1998) Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis. Mol Plant Microbe Interact 11:404–412PubMedCrossRefGoogle Scholar
  30. Tanner F, Vojnovich C, Van Lanen JM (1945) Riboflavin production by Candida species. Science 101:180–183PubMedCrossRefGoogle Scholar
  31. Tilburn J, Roussel F, Scazzocchio C (1990) Insertional inactivation and cloning of the wa gene of Aspergillus nidulans. Genetics 126:81–90PubMedGoogle Scholar
  32. Van Dijk R, Faber KN, Hammond AT, Glick BS, Veenhuis M, Kiel JAKW (2001) Tagging Hansenula polymopha genes by random integration of linear DNA fragments (RALF). Mol Genet Genomics 266:646–656PubMedCrossRefGoogle Scholar
  33. Voronovsky A, Abbas C, Fayura L, Kshanovska B, Dmytruk K, Sybirna K, Sibirny A (2002) Development of a transformation system for the flavinogenic yeast Candida famata. FEMS Yeast Res 2:381–388PubMedGoogle Scholar
  34. Voronovsky AY, Abbas CA, Dmytruk KV, Ishchuk OP, Kshanovska BV, Sybirna KA, Gaillardin C, Sibirny AA (2004) Candida famata (Debaryomyces hansenii) DNA sequences containing genes involved in ribo.avin synthesis. Yeast 21:1307–1316PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Kostyantyn V. Dmytruk
    • 1
  • Andriy Y. Voronovsky
    • 1
  • Andriy A. Sibirny
    • 1
    • 2
    Email author
  1. 1.Institute of Cell BiologyNAS of UkraineLvivUkraine
  2. 2.Department of Metabolic EngineeringRzeszow UniversityRzeszowPoland

Personalised recommendations