Current Genetics

, Volume 50, Issue 2, pp 137–147 | Cite as

The complete mitochondrial DNA sequence of the green alga Oltmannsiellopsis viridis: evolutionary trends of the mitochondrial genome in the Ulvophyceae

  • Jean-François Pombert
  • Philippe Beauchamp
  • Christian Otis
  • Claude Lemieux
  • Monique TurmelEmail author
Research Article


The mitochondrial genome displays a highly plastic architecture in the green algal division comprising the classes Prasinophyceae, Trebouxiophyceae, Ulvophyceae, and Chlorophyceae (Chlorophyta). The compact mitochondrial DNAs (mtDNAs) of Nephroselmis (Prasinophyceae) and Prototheca (Trebouxiophyceae) encode about 60 genes and have been ascribed an ‘ancestral’ pattern of evolution, whereas those of chlorophycean green algae are much more reduced in gene content and size. Although the mtDNA of the early-diverging ulvophyte Pseudendoclonium contains 57 conserved genes, it differs from ‘ancestral’ chlorophyte mtDNAs by its unusually large size (96 kb) and long intergenic spacers. To gain insights into the evolutionary trends of mtDNA in the Ulvophyceae, we have determined the complete mtDNA sequence of Oltmannsiellopsis viridis, an ulvophyte belonging to a distinct, early-diverging lineage. This 56,761 bp genome harbours 54 conserved genes, numerous repeated sequences, and only three introns. From our comparative analyses with Pseudendoclonium mtDNA, we infer that the mitochondrial genome of the last common ancestor of the two ulvophytes closely resembled that of the trebouxiophyte Prototheca in terms of gene content and gene density. Our results also provide strong evidence for the intracellular, interorganellar transfer of a group I intron and for two distinct events of intercellular, horizontal DNA transfer.


Green algae Mitochondrial genome evolution Horizontal DNA transfers Introns Repeated sequences 



Double-hairpin element


Large subunit


Mitochondrial DNA


Open reading frame


Short dispersed repeats



We are grateful to Patrick Charlebois for his help with the analysis of conserved gene clusters. This work was supported by a grant from the Natural Sciences and Engineering Research Council of Canada (to M.T. and C.L.). Nucleotide sequence data reported are available in the GenBank database under the accession number DQ365900.

Supplementary material

294_2006_76_MOESM1_ESM.pdf (1.9 mb)
Supplementary material


  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  2. Belfort M, Roberts RJ (1997) Homing endonucleases: keeping the house in order. Nucleic Acids Res 25:3379–3388CrossRefPubMedGoogle Scholar
  3. Bergthorsson U, Adams KL, Thomason B, Palmer JD (2003) Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature 424:197–201CrossRefPubMedGoogle Scholar
  4. Bergthorsson U, Richardson AO, Young GJ, Goertzen LR, Palmer JD (2004) Massive horizontal transfer of mitochondrial genes from diverse land plant donors to the basal angiosperm Amborella. Proc Natl Acad Sci USA 101:17747–17752CrossRefPubMedGoogle Scholar
  5. Boer PH, Gray MW (1991) Short dispersed repeats localized in spacer regions of Chlamydomonas reinhardtii mitochondrial DNA. Curr Genet 19:309–312CrossRefPubMedGoogle Scholar
  6. Burger G, Saint-Louis D, Gray MW, Lang BF (1999) Complete sequence of the mitochondrial DNA of the red alga Porphyra purpurea. Cyanobacterial introns and shared ancestry of red and green algae. Plant Cell 11:1675–1694CrossRefPubMedGoogle Scholar
  7. Burke JM, Belfort M, Cech TR, Davies RW, Schweyen RJ, Shub DA, Szostak JW, Tabak HF (1987) Structural conventions for group I introns. Nucleic Acids Res 15:7217–7221PubMedCrossRefGoogle Scholar
  8. Chihara M, Inouye I, Takahata N (1986) Oltmannsiellopsis, a new genus of marine flagellate (Dunaliellaceae, Chlorophyceae). Arch Protistenkd 132:313–324Google Scholar
  9. Côté V, Mercier J-P, Lemieux C, Turmel M (1993) The single group-I intron in the chloroplast rrnL gene of Chlamydomonas humicola encodes a site-specific DNA endonuclease (I-ChuI). Gene 129:69–76CrossRefPubMedGoogle Scholar
  10. Davis CC, Wurdack KJ (2004) Host-to-parasite gene transfer in flowering plants: phylogenetic evidence from Malpighiales. Science 305:676–678CrossRefPubMedGoogle Scholar
  11. Denovan-Wright EM, Nedelcu AM, Lee RW (1998) Complete sequence of the mitochondrial DNA of Chlamydomonas eugametos. Plant Mol Biol 36:285–295CrossRefPubMedGoogle Scholar
  12. Fluit AC, Schmitz FJ (1999) Class 1 integrons, gene cassettes, mobility, and epidemiology. Eur J Clin Microbiol Infect Dis 18:761–770CrossRefPubMedGoogle Scholar
  13. Fontaine JM, Goux D, Kloareg B, Loiseaux-de Goer S (1997) The reverse-transcriptase-like proteins encoded by group II introns in the mitochondrial genome of the brown alga Pylaiella littoralis belong to two different lineages which apparently coevolved with the group II ribosyme lineages. J Mol Evol 44:33–42CrossRefPubMedGoogle Scholar
  14. Friedl T, O’Kelly CJ (2002) Phylogenetic relationships of green algae assigned to the genus Planophila (Chlorophyta): evidence from 18S rDNA sequence data and ultrastructure. Eur J Phycol 37:373–384CrossRefGoogle Scholar
  15. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704CrossRefPubMedGoogle Scholar
  16. Hargraves PE, Steele RL (1980) Morphology and ecology of Oltmannsiella virida, sp. nov. (Chlorophyceae: Volvocales). Phycologia 19:96–102Google Scholar
  17. Hauth AM, Maier UG, Lang BF, Burger G (2005) The Rhodomonas salina mitochondrial genome: bacteria-like operons, compact gene arrangement and complex repeat region. Nucleic Acids Res 33:4433–4442CrossRefPubMedGoogle Scholar
  18. Keller MD, Selvin RC, Claus W, Guillard RRL (1987) Media for the culture of oceanic ultraphytoplankton. J Phycol 23:633–638CrossRefGoogle Scholar
  19. Kroymann J, Zetsche K (1998) The mitochondrial genome of Chlorogonium elongatum inferred from the complete sequence. J Mol Evol 47:431–440CrossRefPubMedGoogle Scholar
  20. Kück U, Jekosch K, Holzamer P (2000) DNA sequence analysis of the complete mitochondrial genome of the green alga Scenedesmus obliquus: evidence for UAG being a leucine and UCA being a non-sense codon. Gene 253:13–18CrossRefPubMedGoogle Scholar
  21. Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R (2001) REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res 29:4633–4642CrossRefPubMedGoogle Scholar
  22. Lang BF, Gray MW, Burger G (1999) Mitochondrial genome evolution and the origin of eukaryotes. Annu Rev Genet 33:351–397CrossRefPubMedGoogle Scholar
  23. Lazowska J, Jacq C, Slonimski PP (1980) Sequence of introns and flanking exons in wild-type and box3 mutants of cytochrome b reveals an interlaced splicing protein coded by an intron. Cell 22:333–348CrossRefPubMedGoogle Scholar
  24. Lewis LA, McCourt RM (2004) Green algae and the origin of land plants. Am J Bot 91:1535–1556CrossRefGoogle Scholar
  25. Michaelis G, Vahrenholz C, Pratje E (1990) Mitochondrial DNA of Chlamydomonas reinhardtii: the gene for apocytochrome b and the complete functional map of the 15.8 kb DNA. Mol Gen Genet 223:211–216PubMedGoogle Scholar
  26. Michel F, Westhof E (1990) Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. J Mol Biol 216:585–610CrossRefPubMedGoogle Scholar
  27. Michel F, Umesono K, Ozeki H (1989) Comparative and functional anatomy of group II catalytic introns—a review. Gene 82:5–30CrossRefPubMedGoogle Scholar
  28. Mower JP, Stefanovic S, Young GJ, Palmer JD (2004) Plant genetics: gene transfer from parasitic to host plants. Nature 432:165–166CrossRefPubMedGoogle Scholar
  29. Nakayama T, Watanabe S, Inouye I (1996) Phylogeny of wall-less green flagellates inferred from 18S rDNA sequence data. Phycol Res 44:151–161CrossRefGoogle Scholar
  30. Nedelcu AM (1997) Fragmented and scrambled mitochondrial ribosomal RNA coding regions among green algae: a model for their origin and evolution. Mol Biol Evol 14:506–517PubMedGoogle Scholar
  31. Nedelcu AM (1998) Contrasting mitochondrial genome organizations and sequence affiliations among green algae: potential factors, mechanisms, and evolutionary scenarios. J Phycol 34:16–28CrossRefGoogle Scholar
  32. Nedelcu AM, Lee RW (1998) Short repetitive sequences in green algal mitochondrial genomes: potential roles in mitochondrial genome evolution. Mol Biol Evol 15:690–701PubMedGoogle Scholar
  33. Nedelcu AM, Lee RW, Lemieux C, Gray MW, Burger G (2000) The complete mitochondrial DNA sequence of Scenedesmus obliquus reflects an intermediate stage in the evolution of the green algal mitochondrial genome. Genome Res 10:819–831CrossRefPubMedGoogle Scholar
  34. Nelson MJ, Green BR (2005) Double hairpin elements and tandem repeats in the non-coding region of Adenoides eludens chloroplast gene minicircles. Gene 358:102–110CrossRefPubMedGoogle Scholar
  35. O’Brien EA, Badidi E, Barbasiewicz A, deSousa C, Lang BF, Burger G (2003) GOBASE—a database of mitochondrial and chloroplast information. Nucleic Acids Res 31:176–178CrossRefPubMedGoogle Scholar
  36. Paquin B, Laforest MJ, Lang BF (2000) Double-hairpin elements in the mitochondrial DNA of Allomyces: evidence for mobility. Mol Biol Evol 17:1760–1768PubMedGoogle Scholar
  37. Pombert JF, Otis C, Lemieux C, Turmel M (2004) The complete mitochondrial DNA sequence of the green alga Pseudendoclonium akinetum (Ulvophyceae) highlights distinctive evolutionary trends in the Chlorophyta and suggests a sister-group relationship between the Ulvophyceae and Chlorophyceae. Mol Biol Evol 21:922–935CrossRefPubMedGoogle Scholar
  38. Pombert JF, Otis C, Lemieux C, Turmel M (2005) The chloroplast genome sequence of the green alga Pseudendoclonium akinetum (Ulvophyceae) reveals unusual structural features and new insights into the branching order of chlorophyte lineages. Mol Biol Evol 22:1903–1918CrossRefPubMedGoogle Scholar
  39. Pombert JF, Lemieux C, Turmel M (2006) The complete chloroplast DNA sequence of the green alga Oltmannsiellopsis viridis reveals a distinctive quadripartite architecture in the chloroplast genome of early diverging ulvophytes. BMC Biol 4:3CrossRefPubMedGoogle Scholar
  40. Roberts RJ, Belfort M, Bestor T, Bhagwat AS, Bickle TA, Bitinaite J, Blumenthal RM, Degtyarev S, Dryden DT, Dybvig K, Firman K, Gromova ES, Gumport RI, Halford SE, Hattman S, Heitman J, Hornby DP, Janulaitis A, Jeltsch A, Josephsen J, Kiss A, Klaenhammer TR, Kobayashi I, Kong H, Kruger DH, Lacks S, Marinus MG, Miyahara M, Morgan RD, Murray NE, Nagaraja V, Piekarowicz A, Pingoud A, Raleigh E, Rao DN, Reich N, Repin VE, Selker EU, Shaw PC, Stein DC, Stoddard BL, Szybalski W, Trautner TA, Van Etten JL, Vitor JM, Wilson GG, Xu SY (2003) A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Res 31:1805–1812CrossRefPubMedGoogle Scholar
  41. Turmel M, Lemieux C, Burger G, Lang BF, Otis C, Plante I, Gray MW (1999) The complete mitochondrial DNA sequences of Nephroselmis olivacea and Pedinomonas minor. Two radically different evolutionary patterns within green algae. Plant Cell 11:1717–1729CrossRefPubMedGoogle Scholar
  42. Turmel M, Otis C, Lemieux C (2002) The chloroplast and mitochondrial genome sequences of the charophyte Chaetosphaeridium globosum: insights into the timing of the events that restructured organelle DNAs within the green algal lineage that led to land plants. Proc Natl Acad Sci USA 99:11275–11280CrossRefPubMedGoogle Scholar
  43. Wolff G, Plante I, Lang BF, Kück U, Burger G (1994) Complete sequence of the mitochondrial DNA of the chlorophyte alga Prototheca wickerhamii. J Mol Biol 237:75–86CrossRefPubMedGoogle Scholar
  44. Won H, Renner SS (2003) Horizontal gene transfer from flowering plants to Gnetum. Proc Natl Acad Sci USA 100:10824–10829CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Jean-François Pombert
    • 1
  • Philippe Beauchamp
    • 1
  • Christian Otis
    • 1
  • Claude Lemieux
    • 1
  • Monique Turmel
    • 1
    Email author
  1. 1.Département de biochimie et de microbiologie, Pavillon Charles-Eugène MarchandUniversité LavalQuébecCanada

Personalised recommendations