Current Genetics

, Volume 50, Issue 1, pp 45–60 | Cite as

The laccase multi-gene family in Coprinopsis cinerea has seventeen different members that divide into two distinct subfamilies

  • Sreedhar Kilaru
  • Patrik J. Hoegger
  • Ursula KüesEmail author
Research Article


Seventeen non-allelic laccase genes and one gene footprint are present in the genome of Coprinopsis cinerea. Two gene subfamilies were defined by intron positions and similarity of deduced gene products, one with 15 members (lcc1lcc15) and one with 2 members (lcc16, lcc17). The first subfamily divides in the phylogenetic tree of deduced proteins into smaller clusters that probably reflect recent gene duplication events. Different laccase genes diverged from each other both by frequent synonymous and non-synonymous codon changes. Mainly synonymous codon changes accumulate in alleles, with up to 12% total codon differences between given pairs of alleles. Overexpression of the 17 laccase genes under the control of a constitutive promoter identified nine active enzymes from subfamily 1. All of these showed laccase activities with DMP (2,6-dimethoxy phenol) as substrate but only eight of them also with ABTS [2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)]. Lcc16 and Lcc17 share certain sequence features with ferroxidases but enzyme assays failed to show such activity. Lcc15 is expected to be non-functional in laccase activity due to an internal deletion of about 150 amino acids. Transcripts were obtained from all genes but splice junctions for three genes were not congruent with translation into a functional protein.


Laccase subfamilies Multi copper oxidases Gene duplication Genome evolution Synonymous and non-synonymous codon changes Splicing 



We very much appreciate Tim James and Jason Thacker for valuable discussions and critical comments on this manuscript and Allen Gathman for including the deduced gene sequences into the Coprinus cinereus genome annotation database. We thank the Broad Institute for releasing to the public the sequence of C. cinerea strain Okayama 7 (, the Göttingen Genomics Laboratory (Göttingen, Germany) for providing their sequencing services. Our laboratory is supported by the Deutsche Bundesstiftung Umwelt (DBU).


  1. Ásgeirsdóttir SA, Halsall JR, Casselton LA (1997) Expression of two closely linked hydrophobin genes of Coprinus cinereus is monokaryon-specific and down-regulated by the oid-1 mutation. Fungal Genet Biol 22:54–63PubMedCrossRefGoogle Scholar
  2. Bertrand T, Jolivalt C, Briozzo P, Caminade E, Joly N, Madzak C, Mougin C (2002) Crystal structure of a four-copper laccase complexed with an arylamine: insights into substrate recognition and correlation with kinetics. Biochemistry 41:7325–7333PubMedCrossRefGoogle Scholar
  3. Binninger DM, Skrzynia C, Pukkila PJ, Casselton LA (1987) DNA-mediated transformation of the basidiomycete Coprinus cinereus. EMBO J 6:835–840PubMedGoogle Scholar
  4. Bonomi F, Kurtz DM, Cui XY (1996) Ferroxidase activity of recombinant Desulfovibrio vulgaris rubrerythrin. J Biol Inorg Chem 1:67–72CrossRefGoogle Scholar
  5. Boulianne RP, Liu Y, Aebi M, Lu BC, Kües U (2000) Fruiting body development in Coprinus cinereus: regulated expression of two galectins secreted by a non-classical pathway. Microbiology 146:1841–1853PubMedGoogle Scholar
  6. Burke RM, Cairney JWG (2002) Laccases and other polyphenol oxidases in ecto- and ericoid mycorrhizal fungi. Mycorrhiza 12:105–116PubMedCrossRefGoogle Scholar
  7. Cardenas W, Dankert JR (2000) Cresolase, catecholase and laccase activities in haemocytes of the red swamp crayfish. Fish Shellfish Immunol 10:33–46PubMedCrossRefGoogle Scholar
  8. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate phenol chloroform extraction. Anal Biochem 162:156–159PubMedCrossRefGoogle Scholar
  9. Chun KT, Edenberg HJ, Kelley MR, Goebl MG (1997) Rapid amplification of uncharacterized transposon-tagged DNA sequences from genomic DNA. Yeast 13:233–240PubMedCrossRefGoogle Scholar
  10. Claus H (2003) Laccases and their occurrence in prokaryotes. Arch Microbiol 179:145–150PubMedGoogle Scholar
  11. Ducros V, Brzozowski AM, Wilson KS, Brown SH, Østergaard P, Schneider P, Yaver DS, Pedersen AH, Davies GJ (1998) Crystal structure of the type-2 Cu depleted laccase from Coprinus cinereus at 2.2 Å resolution. Nature Struct Biol 5:310–316CrossRefPubMedGoogle Scholar
  12. Faraco V, Giardina P, Sannia, G (2003) Metal-responsive elements in Pleurotus ostreatus laccase gene promoters. Microbiology 149:2155–2162PubMedCrossRefGoogle Scholar
  13. Freedman T, Pukkila PJ (1993) De-novo methylation of repeated sequences in Coprinus cinereus. Genetics 135:357–366PubMedGoogle Scholar
  14. Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, FitzHugh W, Ma L-J, Smirnov S, Purcell S, Rehman B, Elkins T, Engels R, Wang SG, Nielsen CB, Butler J, Endrizzi M, Qui DY, Ianakiev P, Pedersen DB, Nelson MA, Werner-Washburne M, Selitrennikoff CP, Kinsey JA, Braun EL, Zelter A, Schulte U, Kothe GO, Jedd G, Mewes W, Staben C, Marcotte E, Greenberg D, Roy A, Foley K, Naylor J, Stange-Thomann N, Barrett R, Gnerre S, Kamal M, Kamvysselis M, Mauceli E, Bielke C, Rudd S, Frishman D, Krystofova S, Rasmussen C, Metzenberg RL, Perkins DD, Kroken S, Cogoni C, Macino G, Catcheside D, Li WX, Pratt RJ, Osmani SA, DeSouza CPC, Glass L, Orbach MJ, Berglund JA, Voelker R, Yarden O, Plamann M, Seller S, Dunlap J, Radford A, Aramayo R, Natvig DO, Alex LA, Mannhaupt G, Ebbole DJ, Freitag M, Paulsen I, Sachs MS, Lander ES, Nusbaum C, Birren B (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859–868PubMedCrossRefGoogle Scholar
  15. Garzillo AM, Calao MC, Buonocore V, Oliva R, Falcigno L, Saviano M, Santoro AM, Zappala R, Bonomo RP, Bianco C, Giardina P, Palmieri G, Sannia G (2001) Structural and kinetic characterization of native laccases from Pleurotus ostreatus, Rigidoporus lignosus and Trametes trogii. J Prot Chem 20:191–201CrossRefGoogle Scholar
  16. Granado JD, Kertesz-Chaloupková K, Aebi M, Kües U (1997) Restriction enzyme-mediated DNA integration in Coprinus cinereus. Mol Gen Genet 256:28–36PubMedCrossRefGoogle Scholar
  17. Hakulinen N, Kiiskinen L-L, Kruus K, Saloheimo M, Paananen A, Koivula A, Rouvinen J (2002) Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site. Nature Struct Biol 9:601–605PubMedGoogle Scholar
  18. Halsall JR, Milner MJ, Casselton LA (2000) Three subfamilies of pheromone and receptor genes generate multiple B mating specificities in the mushroom Coprinus cinereus. Genetics 154:1115–1123PubMedGoogle Scholar
  19. Harmsen MC, Schuren FHJ, Moukha SM, Vanzuilen CM, Punt PJ, Wessels JGH (1992) Sequence analysis of the glyceraldehyde-3-phosphate dehydrogenase genes from the basidiomycetes Schizophyllum commune, Phanerochaete chrysosporium and Agaricus bisporus. Curr Genet 22:447–454PubMedCrossRefGoogle Scholar
  20. Hoegger PJ, Navarro-González M, Kilaru S, Hoffmann M, Westbrook ED, Kües U (2004) The laccase gene family in Coprinopsis cinerea (Coprinus cinereus). Curr Genet 45:9–18PubMedCrossRefGoogle Scholar
  21. Hoegger PJ, Kilaru S, James T, Thacker J, Kües U (2006) Phylogenetic comparison and classification of laccase and related multi-copper oxidase protein sequences. FEBS J (in press)Google Scholar
  22. Keogh RS, Seoighe C, Wolfe KH (1998) Evolution of gene order and chromosome number in Saccharomyces, Kluyveromyces and related fungi. Yeast 14:443–457PubMedCrossRefGoogle Scholar
  23. Kertesz-Chaloupková K, Walser PJ, Granado JD, Aebi M, Kües U (1998) Blue light overrides repression of asexual sporulation by mating type genes in the basidiomycete Coprinus cinereus. Fungal Genet Biol 23:95–109PubMedCrossRefGoogle Scholar
  24. Kiiskinen L-L, Viikar L, Kruus K (2002) Purification and characterisation of a novel laccase from the ascomycete Melanocarpus albomyces. Appl Microbiol Biotechnol 59:198–204PubMedCrossRefGoogle Scholar
  25. Kilaru S, Kües U (2005) Comparison of gpd genes and their protein products in basidiomycetes. Fungal Genet Newsl 52:18–23Google Scholar
  26. Kilaru S, Hoegger PJ, Majcherczyk A, Burns C, Shishido K, Bailey A, Foster GD, Kües U (2005) Expression of laccase gene lcc1 in Coprinopsis cinerea under control of various basidiomycete promoters. Appl Microbiol Biotechnol. DOI 10.1007/s00253-005-0128-1Google Scholar
  27. Klonowska A, Gaudin C, Fournel A, Asso M, Petit JL, Giorgi M and Tron T (2002) Characterization of a low redox potential laccase from the basidiomycete C30. Eur J Biochem 269:6119–6125PubMedCrossRefGoogle Scholar
  28. Kramer KJ, Kanost MR, Hopkins TL, Jiang HB, Zhu YC, Xu RD, Kerwin JL, Turecek F (2001) Oxidative conjugation of catechols with proteins in insect skeletal systems. Tetrahedron 57:385–392CrossRefGoogle Scholar
  29. Kües U, Liu Y (2000) Fruiting body production in basidiomycetes. Appl Microbiol Biotechnol 54:141–152PubMedCrossRefGoogle Scholar
  30. Kües U, Asante-Owusu RN, Mutasa ES, Tymon AM, Pardo EH, O’Shea SF, Göttgens B, and Casselton LA (1994) Two classes of homeodomain proteins specify the multiple A mating types of the mushroom Coprinus cinereus. Plant Cell 6:1467–1475PubMedCrossRefGoogle Scholar
  31. Kumar SVS, Phale PS, Durani S, Wangikar PP (2003) Combined sequence and structure analysis of the fungal laccase family. Biotechnol Bioeng 83:386–394PubMedCrossRefGoogle Scholar
  32. Langfelder K, Streibel M, Jahn B, Haase G, Brakhage AA (2003) Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet Biol 38:143–158PubMedCrossRefGoogle Scholar
  33. Langkjær RB, Cliften PF, Johnston M, Piskur J (2003) Yeast genome duplication was followed by asynchronous differentiation of duplicated genes. Nature 21:848–852CrossRefGoogle Scholar
  34. Larrondo LF, Salas L, Melo F, Vicuna R, and Cullen D (2003) A novel extracellular multicopper oxidase from Phanerochaete chrysosporium with ferroxidase activity. Appl Environ Microbiol 69:6257–6263PubMedCrossRefGoogle Scholar
  35. Larrondo LF, Gonzalez B, Cullen D, Vicuna R (2004) Characterization of a multicopper oxidase gene cluster in Phanerochaete chrysosporium and evidence of altered splicing of the mco transcripts. Microbiol 150: 2775–2783CrossRefGoogle Scholar
  36. Leonowicz A, Cho NS, Luterek J, Wilkolazka A, Wojtaś-Wasilewska M, Matuszewska A, Hofrichter M, Wesenberg D, Rogalski J (2001) Fungal laccase: properties and activity on lignin. J Basic Microbiol 41:185–227PubMedCrossRefGoogle Scholar
  37. Macarena S, Fernando LL, Monica V, Rafael V, Bernardo G (2005) Incomplete processing of peroxidase transcripts in the lignin degrading fungus Phanerochaete chrysosporium. FEMS Microbiol Lett 242:37–44PubMedCrossRefGoogle Scholar
  38. May G, Le Chevanton L, Pukkila PJ (1991) Molecular analysis of the Coprinus cinereus mating type A factor demonstrates an unexpectedly complex structure. Genetics 128:529–538PubMedGoogle Scholar
  39. McCaig BC, Meagher RB, Dean JFD (2005) Gene structure and molecular analysis of the laccase-like multicopper oxidase (LMCO) gene family in Arabidopsis thaliana. Planta 221:619–636PubMedCrossRefGoogle Scholar
  40. Messerschmidt A (ed) (1997) Multi-copper oxidases. World Scientific, SingaporeGoogle Scholar
  41. Missall TA, Moran JM, Corbett JA, Lodge JK (2005) Distinct stress responses of two functional laccases in Cryptococcus neoformans are revealed in the absence of the thiol-specific antioxidant Tsa1. Eukaryot Cell 4:202–208PubMedCrossRefGoogle Scholar
  42. Muraguchi H, Ito Y, Kamada T, Yanagi SO (2003) A linkage map of the basidiomycete Coprinus cinereus based on random amplified polymorphic DNAs and restriction fragment length polymorphisms. Fungal Genet Biol 40:93–102PubMedCrossRefGoogle Scholar
  43. Nosanchuk JD, Casadevall A (2003) The contribution of melanin to microbial pathogenesis. Cell Microbiol 5:203–223PubMedCrossRefGoogle Scholar
  44. Palmieri G, Giardina P, Bianco C, Fontanella B, Sannia G (2000) Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Appl Environ Microbiol 66:920–924PubMedCrossRefGoogle Scholar
  45. di Patti MCB, Felice MR, Camuti AP, Lania A, Musci G (2000) The essential role of Glu-185 and Tyr-354 residues in the ferroxidase activity of Saccharomyces cerevisiae Fet3. FEBS Lett 472:283–286CrossRefGoogle Scholar
  46. di Patti MCB, Paronetto MP, Dolci V, Felice MR, Lania A, Musci G (2001) Mutational analysis of the iron binding site of Saccharomyces cerevisiae ferroxidase Fet3. An in vivo study. FEBS Lett 508:475–478CrossRefGoogle Scholar
  47. Piontek K, Antorini M, Choinowski T (2002) Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-Å resolution containing a full complement of coppers. J Biol Chem 277:37663–37669PubMedCrossRefGoogle Scholar
  48. Pöggeler S, Kempken F (2004) Mobile genetic elements in mycelial fungi. In: Kück U (ed) The mycota. vol II. Genetics and biotechnology, 2nd edn. Springer, Berlin Heidelberg New York, pp 165–198Google Scholar
  49. Rao PS, Niederpruem DJ (1969) Carbohydrate metabolism during morphogenesis of Coprinus lagopus. J Bacteriol 100:1222–1228PubMedGoogle Scholar
  50. Raymond CK, Pownder TA, Sexson SL (1999) General method for plasmid construction using homologous recombination. BioTechniques 26:134–141PubMedGoogle Scholar
  51. Sambrook J, Russell DW (2001) Molecular Cloning. 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  52. Schneider P, Caspersen MB, Mondorf K, Halkier T, Skov LK, Østergaard PR, Brown KM, Brown SH, Xu F (1999) Characterization of a Coprinus cinereus laccase. Enz Microb Technol 25:502–508CrossRefGoogle Scholar
  53. Seitz LC, Tang KL, Cummings WJ, Zolan ME (1996) The rad9 gene of Coprinus cinereus encodes a proline-rich protein required for meiotic chromosome condensation and synapsis. Genetics 142:1105–1117PubMedGoogle Scholar
  54. Solomon EI, Sundaram UM, Machonkin TE (1996) Multicopper oxidases and oxygenases. Chem Rev 96:2563–2605PubMedCrossRefGoogle Scholar
  55. Valderrama B, Oliver P, Medrano-Soto A, Vazquez-Duhalt R (2003) Evolutionary and structural diversity of fungal laccases. Antonie van Leeuwenhoek 84:289–299PubMedCrossRefGoogle Scholar
  56. Xu F (1997) Effects of redox potential and hydroxide inhibition on the pH activity profile of fungal laccases. J Biol Chem 272:924–928PubMedGoogle Scholar
  57. Xu F, Shin WS, Brown SH, Wahleithner JA, Sundaram UM, Solomon EI (1996) A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability. Biochim Biophys Acta 1292:303–311PubMedGoogle Scholar
  58. Xu F, Berka RM, Wahleithner JA, Nelson BA, Shuster JR, Brown SH, Palmer AE, Solomon EI (1998) Site-directed mutations in fungal laccase: effect on redox potential, activity and pH profile. Biochem J 334:63–70PubMedGoogle Scholar
  59. Xu F, Palmer AE, Yaver DS, Berka RM, Gambetta GA, Brown SH, Solomon EI (1999) Targeted mutations in a Trametes villosa laccase - Axial perturbations of the T1 copper. J Biol Chem 274:12372–12375PubMedCrossRefGoogle Scholar
  60. Yaver DS, Overjero MD, Xu F, Nelson BA, Brown KM, Halkier T, Bernauer S, Brown SH, Kauppinen S (1999) Molecular characterization of laccase genes from the basidiomycete Coprinus cinereus and heterologous expression of the laccase Lcc1. Appl Environ Microbiol 65:4943–4948PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Sreedhar Kilaru
    • 1
    • 2
  • Patrik J. Hoegger
    • 1
  • Ursula Kües
    • 1
    Email author
  1. 1.Molecular Wood Biotechnology, Institute of Forest BotanyGeorg-August-University of GöttingenGottingenGermany
  2. 2.School of Biological SciencesBristolUK

Personalised recommendations