Current Genetics

, Volume 47, Issue 4, pp 223–233

Evidence for the association of yeast mitochondrial ribosomes with Cox11p, a protein required for the CuB site formation of cytochrome c oxidase

Research Article

Abstract

Cytochrome c oxidase is the terminal enzyme of the mitochondrial (mt) respiratory chain. It contains copper ions, which are organized in two centres, CuA and CuB. The CuA site of subunit Cox2p is exposed to the mt intermembrane space, while the CuB site of subunit Cox1p is buried in the inner mt membrane. Incorporation of copper into the two centres is crucial for the assembly and activity of the enzyme. Formation of the CuB site is dependent on Cox11p, a copper-binding protein of the mt inner membrane. Here, we experimentally prove that Cox11p possesses a Nin–Cout topology, with the C-terminal copper-binding domain exposed in the mt intermembrane space. Furthermore, we provide evidence for the association of Cox11p with the mt translation machinery. We propose a model in which the CuB site is co-translationally formed by a transient interaction between Cox11p and the nascent Cox1p in the intermembrane space.

Keywords

Cytochrome c oxidase Copper metabolism Mitochondria Cox11p Mitoribosomes Saccharomyces cerevisiae 

References

  1. Banci L, Bertini I, Cantini F, Ciofi-Baffoni S, Gonnelli L, Mangani S (2004) Solution structure of Cox11: a novel type of β-immunoglobulin-like fold involved in CuB site formation of cytochrome c oxidase. J Biol Chem 279:34833–34839Google Scholar
  2. Barros MH, Carlson CG, Glerum DM, Tzagoloff A (2001) Involvement of mitochondrial ferredoxin and Cox15p in hydroxylation of heme O. FEBS Lett 492:133–138Google Scholar
  3. Barros MH, Nobrega FG, Tzagoloff A (2002) Mitochondrial ferredoxin is required for heme A synthesis in Saccharomyces cerevisiae. J Biol Chem 277:9997–10002Google Scholar
  4. Beers J, Glerum DM, Tzagoloff A (1997) Purification, characterization, and localization of yeast Cox17p, a mitochondrial copper shuttle. J Biol Chem 272:33191–33196Google Scholar
  5. Buchwald P, Krummek G, Rödel G (1991) Immunological identification of yeast SCO1 protein as a component of the inner mitochondrial membrane. Mol Gen Genet 229:413–420Google Scholar
  6. Bureik M, Schiffler B, Hiraoka Y, Vogel F, Bernhardt R (2002) Functional expression of human mitochondrial CYP11B2 in fission yeast and identification of a new internal electron transfer protein etp1. Biochemistry 7:2311–2321Google Scholar
  7. Carr HS, Winge DR (2003) Assembly of cytochrome c oxidase within the mitochondrion. Acc Chem Res 36:309–316Google Scholar
  8. Carr HS, George GN, Winge DR (2002) Yeast Cox11, a protein essential for cytochrome c oxidase assembly, is a Cu(I) binding protein. J Biol Chem 277:31237–31242Google Scholar
  9. Daum G, Bohni PC, Schatz G (1982) Import of proteins into mitochondria. Cytochrome b2 and cytochrome c peroxidase are located in the intermembrane space of yeast mitochondria. J Biol Chem 257:13028–13033Google Scholar
  10. Fujiki Y, Hubbard AL, Fowler S, Lazarow PB (1982) Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmatic reticulum. J Cell Biol 93:97–102CrossRefPubMedGoogle Scholar
  11. Gan X, Kitakawa M, Yoshino K, Oshiro N, Yonezawa K (2002) Tag-mediated isolation of yeast mitochondrial ribosome and mass spectrometric identification of its new components. Eur J Biochem 269:5203–5214Google Scholar
  12. Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147CrossRefPubMedGoogle Scholar
  13. Glerum DM, Shtanko A, Tzagoloff A (1996) Characterization of COX17, a yeast gene involved in copper metabolism and assembly of cytochrome oxidase. J Biol Chem 271:14504–14509Google Scholar
  14. Hiser L, Di Valentin M, Hamer AG, Hosler JP (2000) Cox11p is required for stable formation of the CuB and magnesium centers of cytochrome c oxidase. J Biol Chem 275:619–623Google Scholar
  15. Horng YC, Cobine PA, Maxfield AB, Carr HS, Winge DR (2004) Secific copper transfer from the Cox17 metallochaperone to both Sco1 and Cox11 in the assembly of yeast cytochrome c oxidase. J Biol Chem 279:35334–35340Google Scholar
  16. Jia L, Dienhart M, Schramp M, McCauley M, Hell K, Stuart RA (2003) Yeast Oxa1 interacts with mitochondrial ribosomes: the importance of the C-terminal region of Oxa1. EMBO J 22:6438–6447Google Scholar
  17. Kaiser C, Michaelis S, Mitchell A (1994) Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  18. Krause-Buchholz U, Barth K, Dombrowski C, Rödel G (2004) Saccharomyces cerevisiae translational activator Cbs2p is associated with mitochondrial ribosomes. Curr Genet 46:20–28Google Scholar
  19. Krummeck G (1992) Das mitochondriale SCO1 protein von Saccharomyces cerevisiae: untersuchungen zur expression, topologie und funktion. PhD thesis, Ludwig-Maximilians-Universität München, MunichGoogle Scholar
  20. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedGoogle Scholar
  21. Leary S, Kaufman BA, Pellecchia G, Guercin GH, Mattman A, Jaksch M, Eric A, Shoubridge EA (2004) Human SCO1 and SCO2 have independent, cooperative functions in copper delivery to cytochrome c oxidase. Hum Mol Gen 13:1839–1848Google Scholar
  22. Letunic I, Goodstadt L, Dickens NJ, Doerks T, Schultz J, Mott R, Ciccarelli F, Copley RR, Ponting CP, Bork P (2002) Recent improvements to the SMART domain-based sequence annotation resource. Nucleic Acids Res 30:242–244CrossRefPubMedGoogle Scholar
  23. Lode A, Kuschel M, Paret C, Rödel G (2000) Mitochondrial copper metabolism in yeast: interaction between Sco1p and Cox2p. FEBS Lett 485:19–24CrossRefGoogle Scholar
  24. Lode A, Paret C, Rödel G (2002) Molecular characterization of Saccharomyces cerevisiae Sco2p reveals high degree of redundancy with Sco1p. Yeast 19:909–922Google Scholar
  25. Maxfield AB, Heaton DN, Winge DR (2004) Cox17 is functional when tethered to the mitochondrial inner membrane. J Biol Chem 279:5072–5080Google Scholar
  26. McMullin TW, Haffter P, Fox TD (1990) A novel small-subunit ribosomal protein of yeast mitochondria that interacts functionally with an mRNA-specific translational activator. Mol Cell Biol 10:4590–4595Google Scholar
  27. Mumberg D, Müller R, Funk M (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156:119–122CrossRefGoogle Scholar
  28. Nittis T, George GN, Winge DR (2001) Yeast Sco1, a protein essential for cytochrome c oxidase function is a Cu(I)-binding protein. J Biol Chem 276:42520–42526Google Scholar
  29. Petruzella V, Tiranti V, Fernandez P, Ianna P, Carozzo R, Zeviani M (1998) Identification and characterization of human cDNAs specific to BCS1, PET122, SCO1, COX15 and COX11, five genes involved in the formation and function of the mitochondrial respiratory chain. Genomics 54:494–504Google Scholar
  30. Poqulis RJ, Vallejo AN, Pease LR (1996) In vitro recombination and mutagenesis by overlap extension PCR. Methods Mol Biol 57:167–176Google Scholar
  31. Poyton RO, McEwen JE (1996) Crosstalk between nuclear and mitochondrial genomes. Annu Rev Biochem 65:563–607Google Scholar
  32. Puig S, Thiele DJ (2002) Molecular mechanisms of copper uptake and distribution. Curr Opin Chem Biol 6:171–180Google Scholar
  33. Pungartnik C, Kern MF, Brendel M, Henriques JAP (1999) Mutant allele pso7-1, that sensitizes Saccharomyces cerevisiae to photoactivated psoralen is allelic with COX11, encoding a protein indispensable for functional cytochrome c oxidase. Curr Genet 36:124–129Google Scholar
  34. Sali A (1999) Functional links between proteins. Nature 402:23–26Google Scholar
  35. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  36. Sanger F, Nicklen, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467PubMedGoogle Scholar
  37. Saveanu C, Fromont-Racine M, Harington A, Richard F, Namane A, Jacquier A (2001) Identification of 12 new yeast mitochondrial ribosomal proteins including 6 that have no prokaryotic homologues. J Biol Chem 276:15861–15867Google Scholar
  38. Schiestl RH, Gietz RD (1989) High efficiency transformation of intact yeast cells using single stranded nucleic acid as a carrier. Curr Genet 16:339–346CrossRefGoogle Scholar
  39. Stuart RA (2002) Insertion of proteins into the inner membrane of mitochondria: the role of the Oxa1 complex. Biochim Biophys Acta 1592:79–87Google Scholar
  40. Stuart RA, Neupert W (1996) Topogenesis of inner membrane proteins of mitochondria. Trends Biochem Sci 21:261–267Google Scholar
  41. Szyrach G, Ott M, Bonnefoy N, Neupert W, Herrmann J (2003) Ribosome binding to the Oxa1 complex facilitates co-translational protein insertion in mitochondria. EMBO J 22:6448–6457Google Scholar
  42. Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzava-Itoh K, Hakashima R, Yaono R, Yoshikava S (1995) Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 Å. Science 269:1069–1074PubMedGoogle Scholar
  43. Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S (1996) The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 Å . Science 272:1136–1144PubMedGoogle Scholar
  44. Tzagoloff A, Capitano N, Nobrega MP, Gatti D (1990) Cytochrome oxidase assembly in yeast requires the product of COX11, a homolog of the P. denitrificans protein encoded by ORF3. EMBO J 9:2759–2764Google Scholar
  45. Williams EH, Perez-Martinez X, Fox TD (2004) MrpL36p, a highly diverged L31 ribosomal protein homolog with additional functional domains in Saccharomyces cerevisiae mitochondria. Genetics 167:65–75Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Oleh Khalimonchuk
    • 1
  • Kai Ostermann
    • 1
  • Gerhard Rödel
    • 1
  1. 1.Institut für GenetikTechnische Universität DresdenDresdenGermany

Personalised recommendations