Current Genetics

, Volume 49, Issue 2, pp 85–96 | Cite as

Genome-wide analysis of differentially expressed genes from Penicillium chrysogenum grown with a repressing or a non-repressing carbon source

  • Nancy Isabel Castillo
  • Francisco Fierro
  • Santiago Gutiérrez
  • Juan Francisco Martín
Research Article


Penicillium chrysogenum is an economically important ascomycete used as industrial producer of penicillin. However, with the exception of penicillin biosynthesis genes, little attention has been paid to the genetics of other aspects of the metabolism of this fungus. In this article we describe the first attempt of systematic analysis of expressed genes in P. chrysogenum, using a suppression subtractive hybridization approach to clone and identify sequences of genes differentially expressed in media with glucose or lactose as carbon source (penicillin-repressing or non-repressing conditions). A total of 167 clones were analysed, 95 from the glucose condition and 72 from the lactose condition. Genes differentially expressed in the glucose condition encode mainly proteins involved in the mitochondrial electron transport chain and primary metabolism. Genes expressed differentially in lactose-containing medium include genes for secondary metabolism (pcbC, isopenicillin N synthase), different hydrolases and a gene encoding a putative hexose transporter or sensor. The results provided information on how the metabolism of this fungus adapts to different carbon sources. The expression patterns of some of the genes support the hypothesis that glucose induces higher rates of respiration in P. chrysogenum while repressing secondary metabolism.


Differential expression Subtractive hybridization Gene expression Carbon regulation Penicillium chrysogenum Genomes 



This work was supported by grants of the CICYT (BIO2000-1726-C02-01) and the European Union (EUROFUNG Project: QLK3-1999-00729). We acknowledge the interest of ANTIBIÓTICOS, S.A. N. Castillo received a fellowship of the AECI, Ministry of Foreign Affaire, Madrid, Spain. We thank M. Mediavilla and M. Álvarez for excellent technical assistance.


  1. Aharanowitz Y, Cohen G, Martín JF (1992) Penicillin and cephalosporin biosynthetic genes: structure, organization, regulation, and evolution. Annu Rev Microbiol 46:461–495CrossRefGoogle Scholar
  2. Akopyants N, Fradkov A, Diatchenko L, Hill J, Siebert P, Lukyanov S, Sverdlov E, Berg D (1998) PCR-based subtractive hybridization and differences in gene content among strains of Helicobacter pylori. Proc Natl Acad Sci USA 95:13108–13113PubMedCrossRefGoogle Scholar
  3. Bañuelos O, Casqueiro J, Gutiérrez S, Martín JF (2000) Overexpression of the lys1 gene in Penicillium chrysogenum: homocitrate synthase levels, α-aminoadipic acid pool and penicillin production. Appl Microbiol Biotechnol 54:69–77PubMedCrossRefGoogle Scholar
  4. Barredo JL, Cantoral JM, Álvarez E, Díez B, Martín JF (1989a) Cloning, sequence analysis and transcriptional study of the isopenicillin N synthase of Penicillium chrysogenum AS-P-78. Mol Gen Genet 216:91–98PubMedCrossRefGoogle Scholar
  5. Barredo JL, van Solingen P, Díez B, Álvarez E, Cantoral JM, Kattevilder A, Smaal EB, Groenen MAM, Veenstra AE, Martín JF (1998b) Cloning and characterization of acyl-CoA:6-APA acyl-transferase gene of Penicillium chrysogenum. Gene 83:291–300CrossRefGoogle Scholar
  6. Brakhage AA (1998) Molecular regulation of β-lactam biosynthesis in filamentous fungi. Microbiol Mol Biol Rev 62:547–585PubMedGoogle Scholar
  7. Cohen G, Argaman A, Schreiber R, Mislovati M, Aharonowitz Y (1994) The thioredoxin system of Penicillium chrysogenum and its possible role in penicillin biosynthesis. J Bacteriol 176:973–984PubMedGoogle Scholar
  8. Diatchenko L, Lau Y-FC, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA 93:6025–6030PubMedCrossRefGoogle Scholar
  9. Díez B, Gutiérrez S, Barredo J, van Solingen P, van der Vort LHM, Martín JF (1990) The cluster of penicillin biosynthetic genes. Identification and characterization of the pcbAB gene encoding the α-aminoadipyl-cysteinil-valine synthetase and linkage to the pcbC and penDE genes. J Biol Chem 265:16358–16365PubMedGoogle Scholar
  10. Dilks DW, Ring RH, Khawaja XZ, Novak TJ, Aston C (2003) High-throughput confirmation of differential display PCR results using reverse Northern blotting. J Neurosci Methods 123:47–54PubMedCrossRefGoogle Scholar
  11. Feng B, Friedlin E, Marzluf GA (1994) A reporter gene analysis of penicillin biosynthesis gene expression in Penicillium chrysogenum and its regulation by nitrogen and glucose catabolite repression. Appl Environ Microbiol 60:4432–4439PubMedGoogle Scholar
  12. Fierro F, Gutiérrez S, Díez B, Martín JF (1993) Resolution of four large chromosomes in penicillin producing filamentous fungi: the penicillin gene cluster is located on chromosome II (9.6 Mb) in Penicillium notatum and chromosome I (10.4 Mb) in Penicillium chrysogenum. Mol Gen Genet 241:573–578PubMedCrossRefGoogle Scholar
  13. Fierro F, Barredo JL, Díez B, Gutiérrez S, Fernández FJ, Martín JF (1995) The penicillin gene cluster is amplified in tandem repeats linked by conserved hexanucleotide sequences. Proc Natl Acad Sci USA 92:6200–6204PubMedCrossRefGoogle Scholar
  14. Fierro F, Montenegro E, Gutiérrez S, Martín JF (1996) Mutants blocked in penicillin biosynthesis show a deletion of the entire penicillin gene cluster at a specific site within a conserved hexanucleotide sequence. Appl Microbiol Biotechnol 44:597–604PubMedCrossRefGoogle Scholar
  15. Fierro F, Martín JF, Kosalková K (2002) Sulfur-containing β-lactam antibiotics: enzymes, genes and regulation of the biosynthesis. In: Fierro F, Martín JF (eds) Microbial secondary metabolites: biosynthesis, genetics and regulation. Research Signpost, Trivandrum, pp 179–210Google Scholar
  16. Gancedo JM (1998) Yeast carbon catabolite repression. Microb Mol Biol Rev 62:334–361Google Scholar
  17. Gurskaya N, Diatchenko L, Chenchik A, Siebert P, Khaspekov G, Lukyanov K, Vagner L, Ermolaeva O, Lukyanov S, Sverdlov E (1996) Equalizing cDNA substraction based on selective suppression of polymerase chain reaction: cloning of Jurkat cell transcripts induced by phytohemaglutinin and phorbol 12-myristate 13-acetate. Anal Biochem 240:90–97PubMedCrossRefGoogle Scholar
  18. Gutiérrez S, Díez B, Montenegro E, Martín JF (1991) Characterization of the Cephalosporium acremonium pcbAB gene encoding α-aminoadipyl-cysteinyl-valine synthetase, a large multidomain peptide synthetase: linkage to the pcbC gene as a cluster of early cephalosporin biosynthetic genes and evidence of multiple functional domains. J Bacteriol 173:2354–2365PubMedGoogle Scholar
  19. Gutiérrez S, Velasco J, Fernández FJ, Martín JF (1992) The cefG gene of Cephalosporium acremonium is linked to the cefEF gene and encodes a deacetylcephalosporin C acetyltransferase closely related to homoserine O-acetyltransferase. J Bacteriol 174:3056–3064PubMedGoogle Scholar
  20. Gutiérrez S, Marcos AT, Casqueiro J, Kosalkova K, Fernández FJ, Velasco J, Martín JF (1999) Transcription of the pcbAB, pcbC and penDE genes of Penicillium chrysogenum AS-P-78 is repressed by glucose and the repression is not reversed by alkaline pHs. Microbiology 145:317–324PubMedCrossRefGoogle Scholar
  21. Ji W, Wright MB, Cai L, Flament A, Lindpaintner K (2002) Efficacy of SSH PCR in isolating differentially expressed genes. BMC Genomics 3:12–18PubMedCrossRefGoogle Scholar
  22. Kosalková K, Marcos AT, Fierro F, Hernando-Rico V, Gutiérrez S, Martín JF (2000) A novel heptameric sequence (TTAGTAA) is the binding site for a protein required for high level expression of pcbAB, the first gene of the penicillin biosynthesis in Penicillium chrysogenum. J Biol Chem 275:2423–2430PubMedCrossRefGoogle Scholar
  23. Laich F, Fierro F, Martín JF (2002) Production of penicillin by fungi growing on food products: identification of a complete penicillin cluster in Penicillium griseofulvum and a truncated cluster in Penicillium verrucosum. Appl Environ Microbiol 68:1211–1219PubMedCrossRefGoogle Scholar
  24. Liu X, Thiele D (1997) Yeast metallothionein gene expression in response to metals and oxidative stress. Methods: a companion to Methods Enzymol 11:289–299Google Scholar
  25. Liu G, Casqueiro J, Bañuelos O, Cardoza RE, Gutiérrez S, Martín JF (2001) Targeted inactivation of the mecB gene encoding cystathionine-γ-lyase shows that the transsulfuration pathway is required for high level cephalosporin biosynthesis in Acremonium chrysogenum C10 but not for methionine-induction of the cephalosporin genes. J Bacteriol 183:1765–1772PubMedCrossRefGoogle Scholar
  26. Madi L, McBride SA, Bailey LA, Ebbole DJ (1997) rco-3, a gene involved in glucose transport and conidiation in Neurospora crassa. Genetics 146:499–508PubMedGoogle Scholar
  27. Martín JF (2000) Molecular control of expression of penicillin biosynthesis genes in fungi: regulatory proteins interact with a bidirectional promoter region. J Bacteriol 182:2355–2362PubMedCrossRefGoogle Scholar
  28. Martín JF, Casqueiro J, Kosalková K, Marcos AT, Gutiérrez S (1999) Penicillin and cephalosporin biosynthesis: mechanism of carbon catabolite regulation of penicillin production. Antonie Van Leeuwenhoek 75:21–31PubMedCrossRefGoogle Scholar
  29. Moore A, Siedow J (1991) The regulation and nature of the cyanide-resistant alternative oxidase of plant mitochondria. Biochim Biophys Acta 1059:121–140PubMedCrossRefGoogle Scholar
  30. Naranjo L, Martín de Valmaseda E, Bañuelos O, López P, Riaño J, Casqueiro J, Martín JF (2001) The conversion of pipecolic acid into lisine in Penicillium chrysogenum requires pipecolate oxidase and saccharopine reductase: characterization of the lys7 gene encoding saccharopine reductase. J Bacteriol 183:7165–7172PubMedCrossRefGoogle Scholar
  31. Pao S, Paulsen I, Saier M Jr (1998) Major facilitator superfamily. Microbiol Mol Biol Rev 62:1–34PubMedGoogle Scholar
  32. Raitt DC, Bradshaw RE, Pillar TM (1994) Cloning and characterisation of the cytochrome C gene of Aspergillus nidulans. Mol Gen Genet 242:17–22PubMedGoogle Scholar
  33. Revilla G, López-Nieto MJ, Martín JF (1984) Carbon catabolite expresión of penicillin biosíntesis by Penicillium chrysogenum. J Antibiot 37:781–789PubMedGoogle Scholar
  34. Revilla G, Ramos FR, López-Nieto MJ, Álvarez E, Martín JF (1986) Glucose represses formation of δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine and isopenicillin N synthase but not penicillin acyltransferase in Penicillium chrysogenum. J Bacteriol 168:947–952PubMedGoogle Scholar
  35. Rolland F, Winderickx J, Thevelein JM (2001) Glucose-sensing mechanisms in eukaryotic cells. Trends Biochem Sci 26:310–317PubMedCrossRefGoogle Scholar
  36. Ronne H (1995) Glucose repression in fungi. Trends Genet 11:12–17PubMedCrossRefGoogle Scholar
  37. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  38. Schmidt MC, McCartney R, Zhang X, Tillman T, Solimeo H, Wölfl S, Almonte C, Watkins S (1999) Std1 and Mth1 proteins interact with the glucose sensors to control glucose-regulated gene expression in Saccharomyces cerevisiae. Mol Cell Biol 19:4561–4571PubMedGoogle Scholar
  39. Siedow J, Umback A (2000) The mitochondrial cyanide-resistant oxidase: structural conservation amid regulatory diversity. Biochim Biophys Acta 1459:432–439PubMedCrossRefGoogle Scholar
  40. Soares MB (1997) Identification and cloning of differentially expressed genes. Curr Opin Biotechnol 8:542–546PubMedCrossRefGoogle Scholar
  41. Somerson NL, Demain AL, Nunheimer TD (1961) Reversal of lysine inhibition of penicillin production by α-aminoadipic acid. Arch Biochem 93:238–241CrossRefGoogle Scholar
  42. Thykaer J, Nielsen J (2003) Metabolic engineering of β-lactam production. Metab Engineer 5:56–69CrossRefGoogle Scholar
  43. Von Stein O, Thies W-G, Hofmann M (1997) A high throughput screening for rarely transcribed differentially expressed genes. Nucleic Acids Res 25:2598–2602CrossRefGoogle Scholar
  44. Yao Y, Ni Z, Zhang Y, Chen Y, Ding Y, Han Z, Liu Z, Sun Q (2005) Identification of differentially expressed genes in leaf and root between wheat hybrid and its parental inbreds using PCR-based cDNA subtraction. Plant Mol Biol 58:367–384PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Nancy Isabel Castillo
    • 1
  • Francisco Fierro
    • 1
    • 2
  • Santiago Gutiérrez
    • 1
    • 2
    • 3
  • Juan Francisco Martín
    • 1
    • 2
  1. 1.Instituto de Biotecnología de LeónParque Científico de LeónLeónSpain
  2. 2.Área de Microbiología, Fac. de CC. Biológicas y AmbientalesUniversidad de LeónLeónSpain
  3. 3.Área de Microbiología, Fac. CC. De la SaludUniversidad de LeónPonferradaSpain

Personalised recommendations