Current Genetics

, Volume 47, Issue 1, pp 1–17 | Cite as

Sin3: a flexible regulator of global gene expression and genome stability

  • Rebecca A. Silverstein
  • Karl Ekwall
Review Article


SIN3 was first identified genetically as a global regulator of transcription. Sin3 is a large protein composed mainly of protein-interaction domains, whose function is to provide structural support for a heterogeneous Sin3/histone deacetylase (HDAC) complex. The core Sin3/HDAC complex is conserved from yeast to man and consists of eight proteins. In addition to HDACs, Sin3 can sequester other enzymatic functions, including nucleosome remodeling, DNA methylation, N-acetylglucoseamine transferase activity, and histone methylation. Since the Sin3/HDAC complex lacks any DNA-binding activity, it must be targeted to gene promoters by interacting with DNA-binding proteins. Although most research on Sin3 has focused on its role as a corepressor, mounting evidence suggests that Sin3 can also positively regulate transcription. Furthermore, Sin3 is key to the propagation of epigenetically silenced domains and is required for centromere function. Thus, Sin3 provides a platform to deliver multiple combinations modifications to the chromatin, using both sequence-specific and sequence-independent mechanisms.


SIN3 Histone acetylation Chromatin Gene regulation Corepressor 



K.E. is a Royal Swedish Academy of Sciences Research Fellow supported by grants from the Knut and Alice Wallenberg Foundation, the Swedish Cancer Society, and the Swedish Research Councils VR-M, VR-NT and SSF. We would like to thank Mattias Mannervik and Julian Walfridsson for their helpful comments on the manuscript.


  1. Alland L, Muhle R, Hou H Jr, Potes J, Chin L, Schreiber-Agus N, DePinho RA (1997) Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature 387:49–55CrossRefPubMedGoogle Scholar
  2. Alland L, David G, Shen-Li H, Potes J, Muhle R, Lee HC, Hou H Jr, Chen K, DePinho RA (2002) Identification of mammalian Sds3 as an integral component of the Sin3/histone deacetylase corepressor complex. Mol Cell Biol 22:2743–2750CrossRefPubMedGoogle Scholar
  3. Aparicio JG, Viggiani CJ, Gibson DG, Aparicio OM (2004) The Rpd3-Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomyces cerevisiae. Mol Cell Biol 24:4769–4780CrossRefPubMedGoogle Scholar
  4. Ayer DE, Lawrence QA, Eisenman RN (1995) Mad-Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell 80:767–776CrossRefPubMedGoogle Scholar
  5. Baudino TA, Cleveland JL (2001) The Max network gone mad. Mol Cell Biol 21:691–702CrossRefPubMedGoogle Scholar
  6. Bernstein BE, Tong JK, Schreiber SL (2000) Genomewide studies of histone deacetylase function in yeast. Proc Natl Acad Sci USA 97:13708–13713CrossRefPubMedGoogle Scholar
  7. Bowdish KS, Mitchell AP (1993) Bipartite structure of an early meiotic upstream activation sequence from Saccharomyces cerevisiae. Mol Cell Biol 13:2172–2181PubMedGoogle Scholar
  8. Chen JD, Umesono K, Evans RM (1996) SMRT isoforms mediate repression and anti-repression of nuclear receptor heterodimers. Proc Natl Acad Sci USA 93:7567–7571CrossRefPubMedGoogle Scholar
  9. Cosma MP, Tanaka T, Nasmyth K (1999) Ordered recruitment of transcription and chromatin remodeling factors to a cell cycle- and developmentally regulated promoter. Cell 97:299–311CrossRefPubMedGoogle Scholar
  10. Dang VD, Benedik MJ, Ekwall K, Choi J, Allshire RC, Levin HL (1999) A new member of the Sin3 family of corepressors is essential for cell viability and required for retroelement propagation in fission yeast. Mol Cell Biol 19:2351–2365PubMedGoogle Scholar
  11. Dasen JS, Barbera JP, Herman TS, Connell SO, Olson L, Ju B, Tollkuhn J, Baek SH, Rose DW, Rosenfeld MG (2001) Temporal regulation of a paired-like homeodomain repressor/TLE corepressor complex and a related activator is required for pituitary organogenesis. Genes Dev 15:3193–3207CrossRefPubMedGoogle Scholar
  12. David G, Turner GM, Yao Y, Protopopov A, DePinho RA (2003) mSin3-associated protein, mSds3, is essential for pericentric heterochromatin formation and chromosome segregation in mammalian cells. Genes Dev 17:2396–2405CrossRefPubMedGoogle Scholar
  13. De Nadal E, Zapater M, Alepuz PM, Sumoy L, Mas G, Posas F (2004) The MAPK Hog1 recruits Rpd3 histone deacetylase to activate osmoresponsive genes. Nature 427:370–374CrossRefPubMedGoogle Scholar
  14. Dhordain P, Lin RJ, Quief S, Lantoine D, Kerckaert JP, Evans RM, Albagli O (1998) The LAZ3(BCL-6) oncoprotein recruits a SMRT/mSIN3A/histone deacetylase containing complex to mediate transcriptional repression. Nucleic Acids Res 26:4645–4651CrossRefPubMedGoogle Scholar
  15. Dodge JE, Kang YK, Beppu H, Lei H, Li E (2004) Histone H3-K9 methyltransferase ESET is essential for early development. Mol Cell Biol 24:2478–2486CrossRefPubMedGoogle Scholar
  16. Dorland S, Deegenaars ML, Stillman DJ (2000) Roles for the Saccharomyces cerevisiae SDS3, CBK1 and HYM1 genes in transcriptional repression by SIN3. Genetics 154:573–586PubMedGoogle Scholar
  17. Eilers AL, Billin AN, Liu J, Ayer DE (1999) A 13-amino acid amphipathic alpha-helix is required for the functional interaction between the transcriptional repressor Mad1 and mSin3A. J Biol Chem 274:32750–32756CrossRefPubMedGoogle Scholar
  18. Ellenrieder V, Zhang JS, Kaczynski J, Urrutia R (2002) Signaling disrupts mSin3A binding to the Mad1-like Sin3-interacting domain of TIEG2, an Sp1-like repressor. EMBO J 21:2451–2460CrossRefPubMedGoogle Scholar
  19. Espinas ML, Canudas S, Fanti L, Pimpinelli S, Casanova J, Azorin F (2000) The GAGA factor of Drosophila interacts with SAP18, a Sin3-associated polypeptide. EMBO Rep 1:253–259CrossRefPubMedGoogle Scholar
  20. Fleischer TC, Yun UJ, Ayer DE (2003) Identification and characterization of three new components of the mSin3A corepressor complex. Mol Cell Biol 23:3456–3467CrossRefPubMedGoogle Scholar
  21. Glass CK, Rosenfeld MG (2000) The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev 14:121–141PubMedGoogle Scholar
  22. Grimes JA, Nielsen SJ, Battaglioli E, Miska EA, Speh JC, Berry DL, Atouf F, Holdener BC, Mandel G, Kouzarides T (2000) The co-repressor mSin3A is a functional component of the REST-CoREST repressor complex. J Biol Chem 275:9461–9467CrossRefPubMedGoogle Scholar
  23. Gu W, Roeder RG (1997) Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90:595–606CrossRefPubMedGoogle Scholar
  24. Halleck MS, Pownall S, Harder KW, Duncan AM, Jirik FR, Schlegel RA (1995) A widely distributed putative mammalian transcriptional regulator containing multiple paired amphipathic helices, with similarity to yeast SIN3. Genomics 26:403–406CrossRefPubMedGoogle Scholar
  25. Harper SE, Qiu Y, Sharp PA (1996) Sin3 corepressor function in Myc-induced transcription and transformation. Proc Natl Acad Sci USA 93:8536–8540CrossRefPubMedGoogle Scholar
  26. Hassig CA, Fleischer TC, Billin AN, Schreiber SL, Ayer DE (1997) Histone deacetylase activity is required for full transcriptional repression by mSin3A. Cell 89:341–347CrossRefPubMedGoogle Scholar
  27. Heinzel T, Lavinsky RM, Mullen TM, Soderstrom M, Laherty CD, Torchia J, Yang WM, Brard G, Ngo SD, Davie JR, Seto E, Eisenman RN, Rose DW, Glass CK, Rosenfeld MG (1997) A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 387:43–48CrossRefPubMedGoogle Scholar
  28. Hurlin PJ, Queva C, Eisenman RN (1997) Mnt, a novel Max-interacting protein is coexpressed with Myc in proliferating cells and mediates repression at Myc binding sites. Genes Dev 11:44–58PubMedGoogle Scholar
  29. Imai Y, Kurokawa M, Yamaguchi Y, Izutsu K, Nitta E, Mitani K, Satake M, Noda T, Ito Y, Hirai H (2004) The corepressor mSin3A regulates phosphorylation-induced activation, intranuclear location, and stability of AML1. Mol Cell Biol 24:1033–1043CrossRefPubMedGoogle Scholar
  30. Ingen H van, Lasonder E, Jansen JF, Kaan AM, Spronk CA, Stunnenberg HG, Vuister GW (2004) Extension of the binding motif of the Sin3 interacting domain of the Mad family proteins. Biochemistry 43:46–54PubMedGoogle Scholar
  31. Iso T, Sartorelli V, Poizat C, Iezzi S, Wu HY, Chung G, Kedes L, Hamamori Y (2001) HERP, a novel heterodimer partner of HES/E(spl) in Notch signaling. Mol Cell Biol 21:6080–6089CrossRefPubMedGoogle Scholar
  32. Jazayeri A, McAinsh AD, Jackson SP (2004) Saccharomyces cerevisiae Sin3p facilitates DNA double-strand break repair. Proc Natl Acad Sci USA 101:1644–1649CrossRefPubMedGoogle Scholar
  33. Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J, Wolffe AP (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 19:187–191CrossRefPubMedGoogle Scholar
  34. Kadosh D, Struhl K (1997) Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell 89:365–371CrossRefPubMedGoogle Scholar
  35. Kadosh D, Struhl K (1998) Targeted recruitment of the Sin3-Rpd3 histone deacetylase complex generates a highly localized domain of repressed chromatin in vivo. Mol Cell Biol 18:5121–5127PubMedGoogle Scholar
  36. Kasten MM, Stillman DJ (1997) Identification of the Saccharomyces cerevisiae genes STB1-STB5 encoding Sin3p binding proteins. Mol Gen Genet 256:376–386CrossRefPubMedGoogle Scholar
  37. Kasten MM, Ayer DE, Stillman DJ (1996) SIN3-dependent transcriptional repression by interaction with the Mad1 DNA-binding protein. Mol Cell Biol 16:4215–4221PubMedGoogle Scholar
  38. Kataoka H, Bonnefin P, Vieyra D, Feng X, Hara Y, Miura Y, Joh T, Nakabayashi H, Vaziri H, Harris CC, Riabowol K (2003) ING1 represses transcription by direct DNA binding and through effects on p53. Cancer Res 63:5785–5792PubMedGoogle Scholar
  39. Kaufman PD, Kobayashi R, Stillman B (1997) Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-I. Genes Dev 11:345–357PubMedGoogle Scholar
  40. Kelly WG, Dahmus ME, Hart GW (1993) RNA polymerase II is a glycoprotein. Modification of the COOH-terminal domain by O-GlcNAc. J Biol Chem 268:10416–10424Google Scholar
  41. Kouzarides T (1993) Transcriptional regulation by the retinoblastoma protein. Trends Cell Biol 3:211–213CrossRefPubMedGoogle Scholar
  42. Krebs JE, Kuo MH, Allis CD, Peterson CL (1999) Cell cycle-regulated histone acetylation required for expression of the yeast HO gene. Genes Dev 13:1412–1421PubMedGoogle Scholar
  43. Kurdistani SK, Robyr D, Tavazoie S, Grunstein M (2002) Genome-wide binding map of the histone deacetylase Rpd3 in yeast. Nat Genet 31:248–254CrossRefPubMedGoogle Scholar
  44. Kurdistani SK, Tavazoie S, Grunstein M (2004) Mapping global histone acetylation patterns to gene expression. Cell 117:721–733CrossRefPubMedGoogle Scholar
  45. Kuzmichev A, Zhang Y, Erdjument-Bromage H, Tempst P, Reinberg D (2002) Role of the Sin3-histone deacetylase complex in growth regulation by the candidate tumor suppressor p33(ING1). Mol Cell Biol 22:835–848PubMedGoogle Scholar
  46. Laherty CD, Yang WM, Sun JM, Davie JR, Seto E, Eisenman RN (1997) Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell 89:349–356CrossRefPubMedGoogle Scholar
  47. Laherty CD, Billin AN, Lavinsky RM, Yochum GS, Bush AC, Sun JM, Mullen TM, Davie JR, Rose DW, Glass CK, Rosenfeld MG, Ayer DE, Eisenman RN (1998) SAP30, a component of the mSin3 corepressor complex involved in N-CoR-mediated repression by specific transcription factors. Mol Cell 2:33–42CrossRefPubMedGoogle Scholar
  48. Lai A, Kennedy BK, Barbie DA, Bertos NR, Yang XJ, Theberge MC, Tsai SC, Seto E, Zhang Y, Kuzmichev A, Lane WS, Reinberg D, Harlow E, Branton PE (2001) RBP1 recruits the mSIN3-histone deacetylase complex to the pocket of retinoblastoma tumor suppressor family proteins found in limited discrete regions of the nucleus at growth arrest. Mol Cell Biol 21:2918–2932CrossRefPubMedGoogle Scholar
  49. Le Guezennec X, Vriend G, Stunnenberg HG (2004) Molecular determinants of the interaction of Mad with the PAH2 domain of mSin3. J Biol Chem 279:25823–25829CrossRefPubMedGoogle Scholar
  50. Lechner T, Carrozza MJ, Yu Y, Grant PA, Eberharter A, Vannier D, Brosch G, Stillman DJ, Shore D, Workman JL (2000) Sds3 (suppressor of defective silencing 3) is an integral component of the yeast Sin3[middle dot]Rpd3 histone deacetylase complex and is required for histone deacetylase activity. J Biol Chem 275:40961–40966CrossRefPubMedGoogle Scholar
  51. Li J, Lin Q, Wang W, Wade P, Wong J (2002) Specific targeting and constitutive association of histone deacetylase complexes during transcriptional repression. Genes Dev 16:687–692CrossRefPubMedGoogle Scholar
  52. Liu L, Scolnick DM, Trievel RC, Zhang HB, Marmorstein R, Halazonetis TD, Berger SL (1999) p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol Cell Biol 19:1202–1209PubMedGoogle Scholar
  53. Liu H, Dibling B, Spike B, Dirlam A, Macleod K (2004) New roles for the RB tumor suppressor protein. Curr Opin Genet Dev 14:55–64CrossRefPubMedGoogle Scholar
  54. Lutterbach B, Westendorf JJ, Linggi B, Isaac S, Seto E, Hiebert SW (2000) A mechanism of repression by acute myeloid leukemia-1, the target of multiple chromosomal translocations in acute leukemia. J Biol Chem 275:651–656CrossRefPubMedGoogle Scholar
  55. Martinez-Balbas MA, Tsukiyama T, Gdula D, Wu C (1998) Drosophila NURF-55, a WD repeat protein involved in histone metabolism. Proc Natl Acad Sci USA 95:132–137CrossRefPubMedGoogle Scholar
  56. Moehren U, Dressel U, Reeb CA, Vaisanen S, Dunlop TW, Carlberg C, Baniahmad A (2004) The highly conserved region of the co-repressor Sin3A functionally interacts with the co-repressor Alien. Nucleic Acids Res 32:2995–3004CrossRefPubMedGoogle Scholar
  57. Murphy M, Ahn J, Walker KK, Hoffman WH, Evans RM, Levine AJ, George DL (1999) Transcriptional repression by wild-type p53 utilizes histone deacetylases, mediated by interaction with mSin3a. Genes Dev 13:2490–2501CrossRefPubMedGoogle Scholar
  58. Muscat GE, Burke LJ, Downes M (1998) The corepressor N-CoR and its variants RIP13a and RIP13Delta1 directly interact with the basal transcription factors TFIIB, TAFII32 and TAFII70. Nucleic Acids Res 26:2899–2907CrossRefPubMedGoogle Scholar
  59. Nagashima M, Shiseki M, Miura K, Hagiwara K, Linke SP, Pedeux R, Wang XW, Yokota J, Riabowol K, Harris CC (2001) DNA damage-inducible gene p33ING2 negatively regulates cell proliferation through acetylation of p53. Proc Natl Acad Sci USA 98:9671–9676CrossRefPubMedGoogle Scholar
  60. Nagy L, Kao HY, Chakravarti D, Lin RJ, Hassig CA, Ayer DE, Schreiber SL, Evans RM (1997) Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 89:373–380CrossRefPubMedGoogle Scholar
  61. Nakamura T, Mori T, Tada S, Krajewski W, Rozovskaia T, Wassell R, Dubois G, Mazo A, Croce CM, Canaani E (2002) ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol Cell 10:1119–1128CrossRefPubMedGoogle Scholar
  62. Nakayama J, Xiao G, Noma K, Malikzay A, Bjerling P, Ekwall K, Kobayashi R, Grewal SI (2003) Alp13, an MRG family protein, is a component of fission yeast Clr6 histone deacetylase required for genomic integrity. EMBO J 22:2776–2787CrossRefPubMedGoogle Scholar
  63. Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393:386–389CrossRefPubMedGoogle Scholar
  64. Nasmyth K, Stillman D, Kipling D (1987) Both positive and negative regulators of HO transcription are required for mother-cell-specific mating-type switching in yeast. Cell 48:579–587CrossRefPubMedGoogle Scholar
  65. Neer EJ, Schmidt CJ, Nambudripad R, Smith TF (1994) The ancient regulatory-protein family of WD-repeat proteins. Nature 371:297–300CrossRefPubMedGoogle Scholar
  66. Ng HH, Zhang Y, Hendrich B, Johnson CA, Turner BM, Erdjument-Bromage H, Tempst P, Reinberg D, Bird A (1999) MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat Genet 23:58–61PubMedGoogle Scholar
  67. Parthun MR, Widom J, Gottschling DE (1996) The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism. Cell 87:85–94CrossRefPubMedGoogle Scholar
  68. Pile LA, Schlag EM, Wassarman DA (2002) The SIN3/RPD3 deacetylase complex is essential for G(2) phase cell cycle progression and regulation of SMRTER corepressor levels. Mol Cell Biol 22:4965–4976CrossRefPubMedGoogle Scholar
  69. Pile LA, Spellman PT, Katzenberger RJ, Wassarman DA (2003) The SIN3 deacetylase complex represses genes encoding mitochondrial proteins: implications for the regulation of energy metabolism. J Biol Chem 278:37840–37848CrossRefPubMedGoogle Scholar
  70. Qian YW, Lee EY (1995) Dual retinoblastoma-binding proteins with properties related to a negative regulator of ras in yeast. J Biol Chem 270:25507–25513CrossRefPubMedGoogle Scholar
  71. Qian YW, Wang YC, Hollingsworth RE Jr, Jones D, Ling N, Lee EY (1993) A retinoblastoma-binding protein related to a negative regulator of Ras in yeast. Nature 364:648–652CrossRefPubMedGoogle Scholar
  72. Roopra A, Sharling L, Wood IC, Briggs T, Bachfischer U, Paquette AJ, Buckley NJ (2000) Transcriptional repression by neuron-restrictive silencer factor is mediated via the Sin3-histone deacetylase complex. Mol Cell Biol 20:2147–2157CrossRefPubMedGoogle Scholar
  73. Rundlett SE, Carmen AA, Suka N, Turner BM, Grunstein M (1998) Transcriptional repression by UME6 involves deacetylation of lysine 5 of histone H4 by RPD3. Nature 392:831–835CrossRefPubMedGoogle Scholar
  74. Sakaguchi K, Herrera JE, Saito S, Miki T, Bustin M, Vassilev A, Anderson CW, Appella E (1998) DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev 12:2831–2841PubMedGoogle Scholar
  75. Schreiber-Agus N, Chin L, Chen K, Torres R, Rao G, Guida P, Skoultchi AI, DePinho RA (1995) An amino-terminal domain of Mxi1 mediates anti-Myc oncogenic activity and interacts with a homolog of the yeast transcriptional repressor SIN3. Cell 80:777–786CrossRefPubMedGoogle Scholar
  76. Schultz DC, Ayyanathan K, Negorev D, Maul GG, Rauscher FJ III (2002) SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev 16:919–932CrossRefPubMedGoogle Scholar
  77. Scott KL, Plon SE (2003) Loss of Sin3/Rpd3 histone deacetylase restores the DNA damage response in checkpoint-deficient strains of Saccharomyces cerevisiae. Mol Cell Biol 23:4522–4531CrossRefPubMedGoogle Scholar
  78. Sekinger EA, Gross DS (2001) Silenced chromatin is permissive to activator binding and PIC recruitment. Cell 105:403–414CrossRefPubMedGoogle Scholar
  79. Sif S, Saurin AJ, Imbalzano AN, Kingston RE (2001) Purification and characterization of mSin3A-containing Brg1 and hBrm chromatin remodeling complexes. Genes Dev 15:603–618CrossRefPubMedGoogle Scholar
  80. Silverstein RA, Richardson W, Levin H, Allshire R, Ekwall K (2003) A new role for the transcriptional corepressor SIN3; regulation of centromeres. Curr Biol 13:68–72CrossRefPubMedGoogle Scholar
  81. Sommer A, Hilfenhaus S, Menkel A, Kremmer E, Seiser C, Loidl P, Luscher B (1997) Cell growth inhibition by the Mad/Max complex through recruitment of histone deacetylase activity. Curr Biol 7:357–365CrossRefPubMedGoogle Scholar
  82. Sternberg PW, Stern MJ, Clark I, Herskowitz I (1987) Activation of the yeast HO gene by release from multiple negative controls. Cell 48:567–577CrossRefPubMedGoogle Scholar
  83. Strich R, Slater MR, Esposito RE (1989) Identification of negative regulatory genes that govern the expression of early meiotic genes in yeast. Proc Natl Acad Sci USA 86:10018–10022PubMedGoogle Scholar
  84. Taunton J, Hassig CA, Schreiber SL (1996) A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272:408–411PubMedGoogle Scholar
  85. Tsai CC, Kao HY, Yao TP, McKeown M, Evans RM (1999) SMRTER, aDrosophila nuclear receptor coregulator, reveals that EcR-mediated repression is critical for development. Mol Cell 4:175–186CrossRefPubMedGoogle Scholar
  86. Tyler JK, Bulger M, Kamakaka RT, Kobayashi R, Kadonaga JT (1996) The p55 subunit of Drosophila chromatin assembly factor 1 is homologous to a histone deacetylase-associated protein. Mol Cell Biol 16:6149–6159PubMedGoogle Scholar
  87. Vannier D, Balderes D, Shore D (1996) Evidence that the transcriptional regulators SIN3 and RPD3, and a novel gene (SDS3) with similar functions, are involved in transcriptional silencing in S. cerevisiae. Genetics 144:1343–1353PubMedGoogle Scholar
  88. Vaute O, Nicolas E, Vandel L, Trouche D (2002) Functional and physical interaction between the histone methyl transferase Suv39H1 and histone deacetylases. Nucleic Acids Res 30:475–481CrossRefPubMedGoogle Scholar
  89. Verreault A, Kaufman PD, Kobayashi R, Stillman B (1996) Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell 87:95–104CrossRefPubMedGoogle Scholar
  90. Verreault A, Kaufman PD, Kobayashi R, Stillman B (1998) Nucleosomal DNA regulates the core-histone-binding subunit of the human Hat1 acetyltransferase. Curr Biol 8:96–108CrossRefPubMedGoogle Scholar
  91. Vidal M, Buckley AM, Hilger F, Gaber RF (1990) Direct selection for mutants with increased K+ transport in Saccharomyces cerevisiae. Genetics 125:313–320PubMedGoogle Scholar
  92. Vidal M, Strich R, Esposito RE, Gaber RF (1991) RPD1 (SIN3/UME4) is required for maximal activation and repression of diverse yeast genes. Mol Cell Biol 11:6306–6316PubMedGoogle Scholar
  93. Vietor I, Vadivelu SK, Wick N, Hoffman R, Cotten M, Seiser C, Fialka I, Wunderlich W, Haase A, Korinkova G, Brosch G, Huber LA (2002) TIS7 interacts with the mammalian SIN3 histone deacetylase complex in epithelial cells. EMBO J 21:4621–4631CrossRefPubMedGoogle Scholar
  94. Wade PA, Jones PL, Vermaak D, Wolffe AP (1998) A multiple subunit Mi-2 histone deacetylase from Xenopus laevis cofractionates with an associated Snf2 superfamily ATPase. Curr Biol 8:843–846CrossRefPubMedGoogle Scholar
  95. Wagner C, Dietz M, Wittmann J, Albrecht A, Schuller HJ (2001) The negative regulator Opi1 of phospholipid biosynthesis in yeast contacts the pleiotropic repressor Sin3 and the transcriptional activator Ino2. Mol Microbiol 41:155–166Google Scholar
  96. Wang H, Stillman DJ (1990) In vitro regulation of a SIN3-dependent DNA-binding activity by stimulatory and inhibitory factors. Proc Natl Acad Sci USA 87:9761–9765PubMedGoogle Scholar
  97. Wang H, Stillman DJ (1993) Transcriptional repression in Saccharomyces cerevisiae by a SIN3-LexA fusion protein. Mol Cell Biol 13:1805–1814PubMedGoogle Scholar
  98. Wang H, Clark I, Nicholson PR, Herskowitz I, Stillman DJ (1990) The Saccharomyces cerevisiae SIN3 gene, a negative regulator of HO, contains four paired amphipathic helix motifs. Mol Cell Biol 10:5927–5936PubMedGoogle Scholar
  99. Wang A, Kurdistani SK, Grunstein M (2002) Requirement of Hos2 histone deacetylase for gene activity in yeast. Science 298:1412–1414CrossRefPubMedGoogle Scholar
  100. Wang H, An W, Cao R, Xia L, Erdjument-Bromage H, Chatton B, Tempst P, Roeder RG, Zhang Y (2003) mAM facilitates conversion by ESET of dimethyl to trimethyl lysine 9 of histone H3 to cause transcriptional repression. Mol Cell 12:475–487CrossRefPubMedGoogle Scholar
  101. Washburn BK, Esposito RE (2001) Identification of the Sin3-binding site in Ume6 defines a two-step process for conversion of Ume6 from a transcriptional repressor to an activator in yeast. Mol Cell Biol 21:2057–2069CrossRefPubMedGoogle Scholar
  102. Wong CW, Privalsky ML (1998) Components of the SMRT corepressor complex exhibit distinctive interactions with the POZ domain oncoproteins PLZF, PLZF-RARalpha, and BCL-6. J Biol Chem 273:27695–27702CrossRefPubMedGoogle Scholar
  103. Wysocka J, Myers MP, Laherty CD, Eisenman RN, Herr W (2003) Human Sin3 deacetylase and trithorax-related Set1/Ash2 histone H3-K4 methyltransferase are tethered together selectively by the cell-proliferation factor HCF-1. Genes Dev 17:896–911CrossRefPubMedGoogle Scholar
  104. Xin H, Yoon HG, Singh PB, Wong J, Qin J (2004) Components of a pathway maintaining histone modification and heterochromatin protein 1 binding at the pericentric heterochromatin in Mammalian cells. J Biol Chem 279:9539–9546CrossRefPubMedGoogle Scholar
  105. Xu L, Lavinsky RM, Dasen JS, Flynn SE, McInerney EM, Mullen TM, Heinzel T, Szeto D, Korzus E, Kurokawa R, Aggarwal AK, Rose DW, Glass CK, Rosenfeld MG (1998) Signal-specific co-activator domain requirements for Pit-1 activation. Nature 395:301–306CrossRefPubMedGoogle Scholar
  106. Xu L, Glass CK, Rosenfeld MG (1999) Coactivator and corepressor complexes in nuclear receptor function. Curr Opin Genet Dev 9:140–147CrossRefPubMedGoogle Scholar
  107. Yang Q, Kong Y, Rothermel B, Garry DJ, Bassel-Duby R, Williams RS (2000) The winged-helix/forkhead protein myocyte nuclear factor beta (MNF-beta) forms a co-repressor complex with mammalian sin3B. Biochem J 345:335–343CrossRefPubMedGoogle Scholar
  108. Yang SH, Vickers E, Brehm A, Kouzarides T, Sharrocks AD (2001) Temporal recruitment of the mSin3A-histone deacetylase corepressor complex to the ETS domain transcription factor Elk-1. Mol Cell Biol 21:2802–2814CrossRefPubMedGoogle Scholar
  109. Yang X, Zhang F, Kudlow JE (2002) Recruitment of O-GlcNAc transferase to promoters by corepressor mSin3A: coupling protein O-GlcNAcylation to transcriptional repression. Cell 110:69–80CrossRefPubMedGoogle Scholar
  110. Yang L, Mei Q, Zielinska-Kwiatkowska A, Matsui Y, Blackburn ML, Benedetti D, Krumm AA, Taborsky GJ Jr, Chansky HA (2003) An ERG (ets-related gene)-associated histone methyltransferase interacts with histone deacetylases 1/2 and transcription co-repressors mSin3A/B. Biochem J 369:651–657CrossRefPubMedGoogle Scholar
  111. Yochum GS, Ayer DE (2001) Pf1, a novel PHD zinc finger protein that links the TLE corepressor to the mSin3A-histone deacetylase complex. Mol Cell Biol 21:4110–4118CrossRefPubMedGoogle Scholar
  112. Yochum GS, Ayer DE (2002) Role for the mortality factors MORF4, MRGX, and MRG15 in transcriptional repression via associations with Pf1, mSin3A, and transducin-like enhancer of Split. Mol Cell Biol 22:7868–7876CrossRefPubMedGoogle Scholar
  113. Yoshimoto H, Ohmae M, Yamashita I (1992) The Saccharomyces cerevisiae GAM2/SIN3 protein plays a role in both activation and repression of transcription. Mol Gen Genet 233:327–330PubMedGoogle Scholar
  114. Yuan J, Tirabassi RS, Bush AB, Cole MD (1998) The C. elegans MDL-1 and MXL-1 proteins can functionally substitute for vertebrate MAD and MAX. Oncogene 17:1109–1118CrossRefPubMedGoogle Scholar
  115. Zamir I, Zhang J, Lazar MA (1997) Stoichiometric and steric principles governing repression by nuclear hormone receptors. Genes Dev 11:835–846PubMedGoogle Scholar
  116. Zhang Y, Iratni R, Erdjument-Bromage H, Tempst P, Reinberg D (1997) Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell 89:357–364CrossRefPubMedGoogle Scholar
  117. Zhang Y, LeRoy G, Seelig HP, Lane WS, Reinberg D (1998) The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell 95:279–289CrossRefPubMedGoogle Scholar
  118. Zhang JS, Moncrieffe MC, Kaczynski J, Ellenrieder V, Prendergast FG, Urrutia R (2001) A conserved alpha-helical motif mediates the interaction of Sp1-like transcriptional repressors with the corepressor mSin3A. Mol Cell Biol 21:5041–5049CrossRefPubMedGoogle Scholar
  119. Zhou Y, Santoro R, Grummt I (2002) The chromatin remodeling complex NoRC targets HDAC1 to the ribosomal gene promoter and represses RNA polymerase I transcription. EMBO J 21:4632–4640CrossRefPubMedGoogle Scholar
  120. Zilfou JT, Hoffman WH, Sank M, George DL, Murphy M (2001) The corepressor mSin3a interacts with the proline-rich domain of p53 and protects p53 from proteasome-mediated degradation. Mol Cell Biol 21:3974–3985CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Karolinska Institutet, Department of BiosciencesUniversity College SodertornHuddingeSweden

Personalised recommendations