Advertisement

Current Genetics

, Volume 46, Issue 5, pp 304–315 | Cite as

The transcriptional program of synchronous gametogenesis in Chlamydomonas reinhardtii

  • J. Abe
  • T. Kubo
  • Y. Takagi
  • T. Saito
  • K. Miura
  • H. Fukuzawa
  • Y. Matsuda
Research Article

Abstract

Cells of Chlamydomonas reinhardtii undergo gametogenesis to produce sexually competent gametes under nitrogen-starved conditions. By using a synchronized system for gametogenesis of early G1 cells, several previously identified marker genes and 18 novel nitrogen-starved gametogenesis (NSG) genes isolated by macroarray analysis were placed into at least three temporal classes of expression. Early genes are induced transiently in the first 2 h after transfer to nitrogen-free medium. Middle genes are strongly induced between 3 h and 4 h after nitrogen removal, a time corresponding to the acquisition of mating competency, suggesting their involvement in the gamete program. Late genes are induced between 5 h and 8 h after nitrogen removal, a time after the completion of gametic differentiation, suggesting that they are not directly involved in the formation of sexually competent gametes. All of the 18 NSG genes examined are induced in both mating-type plus and minus gametes and about two-thirds of the genes are also expressed in the mitotic cell cycle, especially at S/M phases.

Keywords

Chlamydomonas reinhardtii Nitrogen-starved gametogenesis Temporal program Transcript levels 

Notes

Acknowledgements

We thank Drs. Erika Asamizu and Satoshi Tabata (Kazusa DNA Institute) for providing EST clones and Drs. Patrick Ferris and Ursula Goodenough (Washington University) for MTA1. We also thank Patrick Ferris for his critical reading of the manuscript.

References

  1. Adair WS, Monk BC, Cohen R, Hwang C, Goodenough UW (1982) Sexual agglutinins from the Chlamydomonas flagellar membrane: partial purification and characterization. J Biol Chem 257:4593–4602PubMedGoogle Scholar
  2. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedGoogle Scholar
  3. Asamizu E, Nakamura Y, Sato S, Fukuzawa H, Tabata S (1999) A large scale structural analysis of cDNAs in a unicellular green alga, Chlamydomonas reinhardtii: generation of 3433 non-redundant expressed sequence tags. DNA Res 6:363–373Google Scholar
  4. Asamizu E, Nakamura Y, Miura K, Fukuzawa H, Fujiwara S, Hirono M, Iwamoto K, Matsuda Y, Minagawa J, Shimogawara K, Takahashi Y, Tabata S (2004) Establishment of publicly available cDNA material and information resource of Chlamydomonas reinhardtii (Chlorophyta), to facilitate gene function analysis. Phycologia (in press)Google Scholar
  5. Aubourg S, Kreis M, Lecharny A (1999) The DEAD box RNA helicase family in Arabidopsis thaliana. Nucleic Acids Res 27:628–636Google Scholar
  6. Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L, Eddy SR, Griffiths-Jones S, Howe KL, Marshall M, Sonnhammer EL (2002) The Pfam protein families database. Nucleic Acids Res 30:276–280CrossRefPubMedGoogle Scholar
  7. Beck CF, Haring MA (1996) Gametic differentiation of Chlamydomonas. Int Rev Cytol 168:259–302Google Scholar
  8. Benton BK, Reid MS, Okayama H (1993) A Schizosaccharomyces pombe gene that promotes sexual differentiation encodes a helix-loop-helix protein with homology to MyoD. EMBO J 12:135–143PubMedGoogle Scholar
  9. Brodsky FM, Chen C-Y, Knuchl C, Towler MC, Wakeham DE (2001) Biological basket weaving: formation and function of clathrin-coated vesicles. Annu Rev Cell Dev Biol 17:517–568CrossRefPubMedGoogle Scholar
  10. Bulté L, Bennoun P (1990) Translational accuracy and sexual differentiation in Chlamydomonas reinhardtii. Curr Genet 18:155–160PubMedGoogle Scholar
  11. Bulté L, Wollman F-A (1992) Evidence for a selective destabilization of an integral membrane protein, the cytochrome b6/f complex, during gametogenesis in Chlamydomonas reinhardtii. Eur J Biochem 204:327–336PubMedGoogle Scholar
  12. Chen Q, Silflow CD (1996) Isolation and characterization of glutamine synthetase genes in Chlamydomonas reinhardtii. Plant Physiol 112:987–996CrossRefPubMedGoogle Scholar
  13. Chu S, DeRisi J, Elsen M, Mulholland J, Botstein D, Brown PO, Herskowitz I (1998) The transcriptional program of sporulation in budding yeast. Science 282:699–705CrossRefPubMedGoogle Scholar
  14. Coates JC (2003) Armadillo repeat proteins: beyond the animal kingdom. Trends Cell Biol 13:463–471CrossRefPubMedGoogle Scholar
  15. Davey J (1998) Fusion of a fission yeast. Yeast 14:1529–1566CrossRefPubMedGoogle Scholar
  16. Detmers PA, Goodenough UW, Condeelis J (1983) Elongation of the fertilization tubule in Chlamydomonas: new observations on the core microfilaments and the effect of transient intracellular signals on their structural integrity. J Cell Biol 97:522–532CrossRefPubMedGoogle Scholar
  17. Detmers PA, Carboni JM, Condeelis J (1985) Localization of actin in Chlamydomonas using antiactin and NBD-phallacidin. Cell Motil 5:415–430PubMedGoogle Scholar
  18. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:14863–14868CrossRefGoogle Scholar
  19. Fernández E, Schnell R, Ranum LPW, Hussey SC, Silflow CD, Lefebvre PA (1989) Isolation and characterization of the nitrate reductase structural gene in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 86:6449–6453PubMedGoogle Scholar
  20. Ferris PJ, Goodenough UW (1994) The mating type locus of Chlamydomonas reinhardtii contains highly rearranged DNA sequences. Cell 76:1135–1145CrossRefPubMedGoogle Scholar
  21. Ferris PJ, Goodenough UW (1997) Mating type in Chlamydomonas is specified by mid, the minus dominance gene. Genetics 146:859–869PubMedGoogle Scholar
  22. Ferris PJ, Woessner JP, Goodenough UW (1996) A sex recognition glycoprotein is encoded by the plus mating-type gene fus1 of Chlamydomonas reinhardtii. Mol Biol Cell 7:1235–1248PubMedGoogle Scholar
  23. Ferris PJ, Woessner JP, Waffenschmidt S, Kilz S, Drees J, Goodenough UW (2001) Glycosylated polyproline II rods with kinks as a structural motif in plant hydroxyproline-rich glycoproteins. Biochemistry 40:2978–2987CrossRefPubMedGoogle Scholar
  24. Ferris PJ, Armbrust EV, Goodenough UW (2002) Genetic structure of the mating-type locus of Chlamydomonas reinhardtii. Genetics 160:181–200PubMedGoogle Scholar
  25. Friedmann I, Colwin AL, Colwin LH (1968) Fine structural aspects of fertilization in Chlamydomonas reinhardti. J Cell Sci 3:115–128PubMedGoogle Scholar
  26. Frishman D, Argos P (1997) Seventy-five percent accuracy in protein secondary structure prediction. Proteins 27:329–335CrossRefPubMedGoogle Scholar
  27. Goodenough UW (1991) Chlamydomonas mating interactions. In: Dworkin M (ed) Microbial cell–cell interactions. American Society for Microbiology, Washington, D.C., pp 71–112Google Scholar
  28. Goodenough UW, Detmers PA, Hwang C (1982) Activation for cell fusion in Chlamydomonas. Analysis of wild-type gametes and nonfusing mutants. J Cell Biol 92:378–386CrossRefPubMedGoogle Scholar
  29. Goodenough UW, Armbrust EV, Cambell AM, Ferris PJ (1995) Molecular genetics of sexuality in Chlamydomonas. Annu Rev Plant Physiol Plant Mol Biol 46:21–44CrossRefGoogle Scholar
  30. Grandbastein M-A (1992) Retroelements in higher plants. Trends Genet 8:103–108PubMedGoogle Scholar
  31. Gromoff ED von, Beck CF (1993) Genes expressed during sexual differentiation of Chlamydomonas reinhardtii. Mol Gen Genet 241:415–421PubMedGoogle Scholar
  32. Grossman AR, Harris EH, Hauser C, Lefebvre PA, Martinez D, Rokhsar D, Shrager J, Silflow CD, Stern D, Vallon O, Zhang Z (2003) Chlamydomonas reinhardtii at the crossroads of genomics. Eukaryot Cell 2:1137–1150CrossRefPubMedGoogle Scholar
  33. Harper JW (2001) Protein destruction: adapting roles for Cks proteins. Curr Biol 11:R431–R435CrossRefPubMedGoogle Scholar
  34. Harper JDI, McCurdy DW, Sanders MA, Salisbury JL, John PCL (1992) Actin dynamics during the cell cycle in Chlamydomonas reinhardtii. Cell Motil Cytoskeleton 22:117–126PubMedGoogle Scholar
  35. Harris EH (1989) The Chlamydomonas sourcebook. Academic, San DiegoGoogle Scholar
  36. Heijne G von (1985) Signal sequences: the limits of variation. J Mol Biol 184:99–105PubMedGoogle Scholar
  37. Hirokawa T, Boon-Chieng S, Mitaku S (1998) SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics 14:378–379CrossRefPubMedGoogle Scholar
  38. Jordan A, Reichard P (1998) Ribonucleotide reductases. Annu Rev Biochem 67:71–98CrossRefPubMedGoogle Scholar
  39. Kassi Y, Adir N, Boger-Nadjar E, Raviv NG, Rubin-Bejerano I, Sagee S, Shenhar G (2003) Transcriptional regulation of meiosis in budding yeast. Int Rev Cytol 224:111–171PubMedGoogle Scholar
  40. Kato T, Kagami O, Yagi T, Kamiya R (1993) Isolation of two species of Chlamydomonas reinhardtii flagellar mutants, ida5 and ida6, that lack a newly identified heavy chain of the inner dynein arm. Cell Struct Funct 18:371–377PubMedGoogle Scholar
  41. Kato-Minoura T, Hirono M, Kamiya R (1997) Chlamydomonas inner-arm dynein mutant, ida5, has a mutation in an actin-encoding gene. J Cell Biol 137:649–656CrossRefPubMedGoogle Scholar
  42. Kinoshita T, Fukuzawa H, Shimada T, Saito T, Matsuda Y (1992) Primary structure and expression of a gamete lytic enzyme in Chlamydomonas reinhardtii: similarity of functional domains to matrix metalloproteases. Proc Natl Acad Sci USA 89:4693–4697PubMedGoogle Scholar
  43. Kubo T, Saito T, Fukuzawa H, Matsuda Y (2001) Two tandemly located matrix metalloprotease genes with different expression patterns in the Chlamydomonas sexual cell cycle. Curr Genet 40:136–143CrossRefPubMedGoogle Scholar
  44. Kubo T, Abe J, Saito T, Matsuda Y (2002) Genealogical relationships among laboratory strains of Chlamydomonas reinhardtii as inferred from matrix metalloprotease genes. Curr Genet 41:115–122CrossRefPubMedGoogle Scholar
  45. Kuriyama H, Takano H, Uchida H, Kawano S, Kuroiwa H, Kuroiwa T (1999) Characterization of Chlamydomonas reinhardtii zygote-specific cDNAs that encode novel proteins containing ankyrin repeats and WW domains. Plant Physiol 119:873–884Google Scholar
  46. Latterich M, Fröhlich KU, Schekman R (1995) Membrane fusion and the cell cycle: Cdc48p participates in the fusion of ER membranes. Cell 82:885–893CrossRefPubMedGoogle Scholar
  47. Lindauer A, Fraser D, Brüderlein M, Schmitt R (1993) Reverse transcriptase families and a copia-like retrotransposon, Osser, in the green alga Volvox carteri. FEBS Lett 319:261–266CrossRefPubMedGoogle Scholar
  48. Maciver SK, Hussey PJ (2002) The ADF/cofilin family: actin-remodeling proteins. Genome Biol 5:1–12Google Scholar
  49. Martin NC, Goodenough UW (1975) Gametic differentiation in Chlamydomonas reinhardti. I. Production of gametes and their fine structure. J Cell Biol 67:587–605CrossRefPubMedGoogle Scholar
  50. Martin NC, Chiang K-S, Goodenough UW (1976) Turnover of chloroplast and cytoplasmic ribosomes during gametogenesis in Chlamydomonas reinhardti. Dev Biol 51:190–201PubMedGoogle Scholar
  51. Matsuda Y (1998) Gametolysin. In: Barrett A, Woessner F, Rawlings N (eds) Handbook of proteolytic enzymes. Academic, New York, pp 1140–1143Google Scholar
  52. Matsuda Y, Tamaki S, Tsubo Y (1978) Mating type specific induction of cell wall lytic factor by agglutination of gametes in Chlamydomonas reinhardtii. Plant Cell Physiol 19:1253–1261Google Scholar
  53. Matsuda Y, Saito T, Koseki M, Shimada T (1990) The Chlamydomonas non-synchronous and synchronous gametogenesis as analyzed by the activities of cell body-agglutinin and cell wall lytic enzyme (Life Sci Adv). Plant Physiol 9:1–6Google Scholar
  54. Matsuda Y, Shimada T, Sakamoto Y (1992) Ammonium ions control gametic differentiation and dedifferentiation in Chlamydomonas reinhardtii. Plant Cell Physiol 33:909–914Google Scholar
  55. Matsuda Y, Koseki M, Shimada T, Saito T (1995) Purification and characterization of a vegetative lytic enzyme responsible for liberation of daughter cells during the proliferation of Chlamydomonas reinhardtii. Plant Cell Physiol 36:681–689PubMedGoogle Scholar
  56. McClintock B (1984) The significance of responses of the genome to challenge. Science 236:792–801Google Scholar
  57. Merchán F, Ende H van den, Fernández E, Beck CF (2001) Low-expression genes induced by nitrogen starvation and subsequent sexual differentiation in Chlamydomonas reinhardtii, isolated by the differential display technique. Planta 213:309–317CrossRefPubMedGoogle Scholar
  58. Misamore MJ, Gupta S, Snell WJ (2003) The Chlamydomonas Fus1 protein is present on the mating type plus fusion organelle and required for critical membrane adhesion event during fusion with minus gametes. Mol Biol Cell 14:2530–2542CrossRefPubMedGoogle Scholar
  59. Miura K, Yamano T, Yoshioka S, Kohinata T, Inoue Y, Taniguchi F, Asamizu E, Nakamura Y, Tabata S, Yamato KT, Ohyama K, Fukuzawa H (2004) Expression profiling-based identification of CO2-responsive genes regulated by CCM1 controlling a carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Physiol 135:1595–1607CrossRefPubMedGoogle Scholar
  60. Mol CD, Harris JM, McIntosh EM, Tainer JA (1996) Human dUTP pyrophosphatase: uracil recognition by a beta hairpin and active sites formed by three separate subunits. Structure 4:1077–1092CrossRefPubMedGoogle Scholar
  61. Morgenstern B, Atchley WR (1999) Evolution of bHLH transcription factors: modular evolution by domain shuffling? Mol Biol Evol 16:1654–1663PubMedGoogle Scholar
  62. Nelson MA, Metzenberg RL (1992) Sexual development genes of Neurospora crassa. Genetics 132:149–162PubMedGoogle Scholar
  63. Peifer M, Berg S, Reynolds AB (1994) A repeating amino acid motif shared by proteins with diverse cellular roles. Cell 76:789–791CrossRefPubMedGoogle Scholar
  64. Picard-Bennoun M, Bennoun P (1985) Change in cytoplasmic ribosome properties during gametogenesis in the alga Chlamydomonas reinhardtii. Curr Genet 9:239–243Google Scholar
  65. Pozuelo M, Merchán F, Macías MI, Beck CF, Galván A, Fernández E (2000) The negative effect of nitrate on gametogenesis is independent of nitrate assimilation in Chlamydomonas reinhardtii. Planta 211:287–292CrossRefPubMedGoogle Scholar
  66. Quesada A, Fernández E (1994) Expression of nitrate assimilation related genes in Chlamydomonas reinhardtii. Plant Mol Biol 24:185–194PubMedGoogle Scholar
  67. Quesada A, Galván A, Fernández E (1994) Identification of nitrate transporter genes in Chlamydomonas reinhardtii. Plant J 5:407–419PubMedGoogle Scholar
  68. Quirk S, Maciver SK, Ampe C, Doberstein SK, Kaiser DA, Van Damme J, Vandekerckhove JS, Pollard TD (1993) Primary structure of and studies on Acanthamoeba actophorin. Biochemistry 32:8525–8533PubMedGoogle Scholar
  69. Rodriguez H, Haring MA, Beck CF (1999) Molecular characterization of two light-induced, gamete-specific genes from Chlamydomonas reinhardtii that encode hydroxyproline-rich proteins. Mol Gen Genet 261:267–274CrossRefPubMedGoogle Scholar
  70. Rost B, Liu J (2003) The PredictProtein server. Nucleic Acids Res 31:3300–3304CrossRefPubMedGoogle Scholar
  71. Sager R, Granick S (1953) Nutritional studies with Chlamydomonas reinhardti. Ann N Y Acad Sci 56:831–838PubMedGoogle Scholar
  72. Sager R, Granick S (1954) Nutritional control of sexuality in Chlamydomonas reinhardti. J Gen Physiol 37:729–742CrossRefPubMedGoogle Scholar
  73. Saito T, Matsuda Y (1984) Sexual agglutinin of mating-type minus gametes in Chlamydomonas reinhardtii: purification and characterization of minus agglutinin and comparison with plus agglutinin. Arch Microbiol 139:95–99Google Scholar
  74. Saito T, Matsuda Y (1991) Isolation and characterization of Chlamydomonas temperature-sensitive mutants affecting gametic differentiation under nitrogen-starved conditions. Curr Genet 19:65–71PubMedGoogle Scholar
  75. Saito T, Inoue M, Yamada M, Matsuda Y (1998) Control of gametic differentiation and activity by light in Chlamydomonas reinhardtii. Plant Cell Physiol 39:8–15Google Scholar
  76. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  77. Schlösser UG (1981) Algal wall-degrading enzymes—autolysines. In: Tanner W, Loewus FA (eds) Encyclopedia of plant physiology new series, vol 13B. Springer, Berlin Heidelberg New York, pp 333–351Google Scholar
  78. Schlösser UG (1984) Species-specific sporangium autolysins (cell wall-dissolving enzymes) in the genus Chlamydomonas. In: Irvine DEG, John DM (eds) Systematics of the green algae. Academic, London, pp 409–418Google Scholar
  79. Schnell RA, Lefebvre PA (1993) Isolation of the Chlamydomonas regulatory gene NIT2 by transposon tagging. Genetics 134:737–747PubMedGoogle Scholar
  80. Schultz J, Milpetz F, Bork P, Ponting CP (1998) SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci USA 95:5857–5864CrossRefPubMedGoogle Scholar
  81. Sedwick SG, Smerdon SJ (1999) The ankyrin repeat: a diversity of interactions on a common structural framework. Trends Biochem Sci 24:311–316CrossRefPubMedGoogle Scholar
  82. Shrager J, Hauser C, Chang C-W, Harris EH, Davies J, McDermott J, Tamse R, Zhang Z, Grossman AR (2003) Chlamydomonas reinhardtii genome project: a guide to the generation and use of the cDNA information. Plant Physiol 131:401–408Google Scholar
  83. Siersma PW, Chiang K-S (1971) Conservation and degradation of cytoplasmic and chloroplast ribosomes in Chlamydomonas reinhardtii. J Mol Biol 58:167–185PubMedGoogle Scholar
  84. Skromne I, Sánchez O, Aguirre J (1995) Starvation stress modulates the expression of the Aspergillus nidulans brlA regulatory gene. Microbiology 141:21–28PubMedGoogle Scholar
  85. Smith EF, Lefebvre PA (1996) PF16 encodes a protein with armadillo repeats and localizes to a single microtubule of the central apparatus in Chlamydomonas flagella. J Cell Biol 132:359–370CrossRefPubMedGoogle Scholar
  86. Smith EF, Lefebvre PA (2000) Defining functional domains within PF16: a central apparatus component required for flagellar motility. Cell Motil Cytoskeleton 46:157–165CrossRefPubMedGoogle Scholar
  87. Snell WJ, Eskue WA, Buchanan MJ (1989) Regulated secretion of a serine protease that activates an extracellular matrix-degrading metalloprotease during fertilization in Chlamydomonas. J Cell Biol 109:1689–1694CrossRefPubMedGoogle Scholar
  88. Sugase Y, Hirono M, Kindle KL, Kamiya R (1996) Cloning and characterization of the actin-encoding gene of Chlamydomonas reinhardtii. Gene 168:117–121CrossRefPubMedGoogle Scholar
  89. Vallon O, Bulté L, Kuras R, Olive J, Wollman FA (1993) Extensive accumulation of an extracellular l-amino-acid oxidase during gametogenesis of Chlamydomonas reinhardtii. Eur J Biochem 215:351–360PubMedGoogle Scholar
  90. Voges D, Zwickl P, Baumeister W (1999) The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 68:1015–1068CrossRefPubMedGoogle Scholar
  91. Voytas DF, Cummings MP, Konieczny A, Ausubel FM, Rodermel SR (1992) copia-like retrotransposons are ubiquitous among plants. Proc Natl Acad Sci USA 89:7124–7128PubMedGoogle Scholar
  92. Xiong Y, Eickbush TH (1990) Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J 9:3353–3362PubMedGoogle Scholar
  93. Ye Y, Meyer HH, Rapoport TA (2001) The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 414:652–656CrossRefPubMedGoogle Scholar
  94. Zhang H, Forde BG (2000) Regulation of Arabidopsis root development by nitrate availability. J Exp Bot 51:51–59CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • J. Abe
    • 1
  • T. Kubo
    • 1
  • Y. Takagi
    • 1
  • T. Saito
    • 2
  • K. Miura
    • 3
  • H. Fukuzawa
    • 3
  • Y. Matsuda
    • 4
  1. 1.Department of Molecular Science, Graduate School of Science and TechnologyKobe UniversityKobe 657-8501Japan
  2. 2.Department of Applied Science, Faculty of ScienceOkayama University of ScienceOkayama 700-0005Japan
  3. 3.Division of Integral Life Science, Graduate School of BiostudiesKyoto UniversityKyoto 606-8502Japan
  4. 4.Department of Biology, Faculty of ScienceKobe UniversityKobe 657-8501Japan

Personalised recommendations