Current Genetics

, Volume 46, Issue 3, pp 123–139 | Cite as

The mitochondrial DNA of land plants: peculiarities in phylogenetic perspective

  • Volker KnoopEmail author
Review Article


Land plants exhibit a significant evolutionary plasticity in their mitochondrial DNA (mtDNA), which contrasts with the more conservative evolution of their chloroplast genomes. Frequent genomic rearrangements, the incorporation of foreign DNA from the nuclear and chloroplast genomes, an ongoing transfer of genes to the nucleus in recent evolutionary times and the disruption of gene continuity in introns or exons are the hallmarks of plant mtDNA, at least in flowering plants. Peculiarities of gene expression, most notably RNA editing and trans-splicing, are significantly more pronounced in land plant mitochondria than in chloroplasts. At the same time, mtDNA is generally the most slowly evolving of the three plant cell genomes on the sequence level, with unique exceptions in only some plant lineages. The slow sequence evolution and a variable occurrence of introns in plant mtDNA provide an attractive reservoir of phylogenetic information to trace the phylogeny of older land plant clades, which is as yet not fully resolved. This review attempts to summarize the unique aspects of land plant mitochondrial evolution from a phylogenetic perspective.


Group I introns Group II introns RNA editing Trans-splicing Gene transfer Land plant phylogeny 



The author gratefully acknowledges continuous collegial exchange with Y.-L. Qiu (Ann Arbor, Mich., USA) and welcomes his laboratory’s initiative to standardize organelle intron nomenclature. I wish to thank Jan-Peter Frahm (Bonn, Germany) for the bryophyte photographs used in Fig. 2 and the Deutsche Forschungsgemeinschaft (DFG) for their support of research in my laboratory.


  1. Abdelnoor RV, Yule R, Elo A, Christensen AC, Meyer-Gauen G, Mackenzie SA (2003) Substoichiometric shifting in the plant mitochondrial genome is influenced by a gene homologous to MutS. Proc Natl Acad Sci USA 100:5968–5973CrossRefPubMedGoogle Scholar
  2. Adams KL, Palmer JD (2003) Evolution of mitochondrial gene content: gene loss and transfer to the nucleus. Mol Phylogenet Evol 29:380–395CrossRefPubMedGoogle Scholar
  3. Adams KL, et al (1998) Evolution of flowering plant mitochondrial genomes: gene content, gene transfer to the nucleus, and highly accelerated mutation rates. In: Moller IM, Gardestrom P, Glimelius K, Glaser E (eds) Plant mitochondria: from gene to function. Backhuys, Leiden, pp 13–18Google Scholar
  4. Adams KL, Song KM, Roessler PG, Nugent JM, Doyle JL, Doyle JJ, Palmer JD (1999) Intracellular gene transfer in action: dual transcription and multiple silencings of nuclear and mitochondrial cox2 genes in legumes. Proc Natl Acad Sci USA 96:13863–13868CrossRefPubMedGoogle Scholar
  5. Adams KL, Daley DO, Qiu YL, Whelan J, Palmer JD (2000) Repeated, recent and diverse transfers of a mitochondrial gene to the nucleus in flowering plants. Nature 408:354–357CrossRefPubMedGoogle Scholar
  6. Adams KL, Ong HC, Palmer JD (2001a) Mitochondrial gene transfer in pieces: fission of the ribosomal protein gene rpl2 and partial or complete gene transfer to the nucleus. Mol Biol Evol 18:2289–2297PubMedGoogle Scholar
  7. Adams KL, Rosenblueth M, Qiu YL, Palmer JD (2001b) Multiple losses and transfers to the nucleus of two mitochondrial succinate dehydrogenase genes during angiosperm evolution. Genetics 158:1289–1300PubMedGoogle Scholar
  8. Adams KL, Daley DO, Whelan J, Palmer JD (2002a) Genes for two mitochondrial ribosomal proteins in flowering plants are derived from their chloroplast or cytosolic counterparts. Plant Cell 14:931–943CrossRefPubMedGoogle Scholar
  9. Adams KL, Qiu YL, Stoutemyer M, Palmer JD (2002b) Punctuated evolution of mitochondrial gene content: High and variable rates of mitochondrial gene loss and transfer to the nucleus during angiosperm evolution. Proc Natl Acad Sci USA 99:9905–9912CrossRefPubMedGoogle Scholar
  10. Andre CP, Walbot V (1995) Pulsed-field gel mapping of maize mitochondrial chromosomes. Mol Gen Genet 247:255–263PubMedGoogle Scholar
  11. Bakker FT, Culham A, Pankhurst CE, Gibby M (2000) Mitochondrial and chloroplast DNA-based phylogeny of Pelarogonium (Geraniaceae). Am J Bot 87:727–734PubMedGoogle Scholar
  12. Beagley CT, Okada NA, Wolstenholme DR (1996) Two mitochondrial group I introns in a metazoan, the sea anemone Metridium senile: one intron contains genes for subunits 1 and 3 of NADH dehydrogenase. Proc Natl Acad Sci USA 93:5619–5623CrossRefPubMedGoogle Scholar
  13. Beckert S, Steinhauser S, Muhle H, Knoop V (1999) A molecular phylogeny of bryophytes based on nucleotide sequences of the mitochondrial nad5 gene. Plant Syst Evol 218:179–192Google Scholar
  14. Beckert S, Muhle H, Pruchner D, Knoop V (2001) The mitochondrial nad2 gene as a novel marker locus for phylogenetic analysis of early land plants: a comparative analysis in mosses. Mol Phylogenet Evol 18:117–126CrossRefPubMedGoogle Scholar
  15. Bendich AJ (1993) Reaching for the ring: the study of mitochondrial genome structure. Curr Genet 24:279–290PubMedGoogle Scholar
  16. Bergthorsson U, Adams KL, Thomason B, Palmer JD (2003) Widespread horizontal transfer of mitochondrial genes in flowering plants. Nature 424:197–201CrossRefPubMedGoogle Scholar
  17. Binder S, Marchfelder A, Brennicke A (1994) RNA editing of tRNA(Phe) and tRNA(Cys) in mitochondria of Oenothera berteriana is initiated in precursor molecules. Mol Gen Genet 244:67–74PubMedGoogle Scholar
  18. Binder S, Marchfelder A, Brennicke A, Wissinger B (1992) RNA editing in trans-splicing intron sequences of nad2 mRNAs in Oenothera mitochondria. J Biol Chem 267:7615–7623PubMedGoogle Scholar
  19. Blanchard JL, Schmidt GW (1995) Pervasive migration of organellar DNA to the nucleus in plants. J Mol Evol 41:397–406PubMedGoogle Scholar
  20. Bowe LM, Coat G, dePamphilis CW (2000) Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales’ closest relatives are conifers. Proc Natl Acad Sci USA 97:4092–4097CrossRefPubMedGoogle Scholar
  21. Budar F, Pelletier G (2001) Male sterility in plants: occurrence, determinism, significance and use. C R Acad Sci III 324:543–550CrossRefPubMedGoogle Scholar
  22. Burger G, Forget L, Zhu Y, Gray MW, Lang BF (2003a) Unique mitochondrial genome architecture in unicellular relatives of animals. Proc Natl Acad Sci USA 100:892–897CrossRefPubMedGoogle Scholar
  23. Burger G, Lang BF, Braun HP, Marx S (2003b) The enigmatic mitochondrial ORF ymf39 codes for ATP synthase chain b. Nucleic Acids Res 31:2353–2360CrossRefPubMedGoogle Scholar
  24. Capesius I, Bopp M (1997) New classification of liverworts based on molecular and morphological data. Plant Syst Evol 207:87–97Google Scholar
  25. Carrillo C, Bonen L (1997) RNA editing status of nad7 intron domains in wheat mitochondria. Nucleic Acids Res 25:403–409CrossRefPubMedGoogle Scholar
  26. Carrillo C, Chapdelaine Y, Bonen L (2001) Variation in sequence and RNA editing within core domains of mitochondrial group II introns among plants. Mol Gen Genet 264:595–603CrossRefPubMedGoogle Scholar
  27. Chapdelaine Y, Bonen L (1991) The wheat mitochondrial gene for subunit I of the NADH dehydrogenase complex: a trans-splicing model for this gene-in-pieces. Cell 65:465–472PubMedGoogle Scholar
  28. Chaw SM, Zharkikh A, Sung HM, Lau TC, Li WH (1997) Molecular phylogeny of extant gymnosperms and seed plant evolution: Analysis of nuclear 18S rRNA sequences. Mol Biol Evol 14:56–68PubMedGoogle Scholar
  29. Chaw SM, Parkinson CL, Cheng YC, Vincent TM, Palmer JD (2000) Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers. Proc Natl Acad Sci USA 97:4086–4091CrossRefPubMedGoogle Scholar
  30. Cho Y, Qiu YL, Kuhlman P, Palmer JD (1998) Explosive invasion of plant mitochondria by a group I intron. Proc Natl Acad Sci USA 95:14244–14249CrossRefPubMedGoogle Scholar
  31. Choquet Y, Goldschmidt-Clermont M, Girard-Bascou J, Kuck U, Bennoun P, Rochaix JD (1988) Mutant phenotypes support a trans-splicing mechanism for the expression of the tripartite psaA gene in the C. reinhardtii chloroplast. Cell 52:903–913PubMedGoogle Scholar
  32. Conklin PL, Wilson RK, Hanson MR (1991) Multiple trans-splicing events are required to produce a mature nad1 transcript in a plant mitochondrion. Genes Dev 5:1407–1415PubMedGoogle Scholar
  33. Cosner ME, Jansen RK, Palmer JD, Downie SR (1997) The highly rearranged chloroplast genome of Trachelium caeruleum (Campanulaceae): multiple inversions, inverted repeat expansion and contraction, transposition, insertions/deletions, and several repeat families. Curr Genet 31:419–429CrossRefPubMedGoogle Scholar
  34. Covello PS, Gray MW (1989) RNA editing in plant mitochondria. Nature 341:662–666CrossRefPubMedGoogle Scholar
  35. Crepet WL (2000) Progress in understanding angiosperm history, success, and relationships: Darwin’s abominably “perplexing phenomenon”. Proc Natl Acad Sci USA 97:12939–12941CrossRefPubMedGoogle Scholar
  36. Cummings MP, Nugent JM, Olmstead RG, Palmer JD (2003) Phylogenetic analysis reveals five independent transfers of the chloroplast gene rbcL to the mitochondrial genome in angiosperms. Curr Genet 43:131–138PubMedGoogle Scholar
  37. Dai L, Zimmerly S (2002) Compilation and analysis of group II intron insertions in bacterial genomes: evidence for retroelement behavior. Nucleic Acids Res 30:1091–1102CrossRefPubMedGoogle Scholar
  38. Daley DO, Adams KL, Clifton R, Qualmann S, Millar AH, Palmer JD, Pratje E, Whelan J (2002) Gene transfer from mitochondrion to nucleus: novel mechanisms for gene activation from Cox2. Plant J 30:11–21CrossRefPubMedGoogle Scholar
  39. Dombrovska O, Qiu YL (2004) Distribution of Introns in the mitochondrial gene nad1 in land plants: phylogenetic and molecular evolutionary implication. Mol Phylogenet Evol 32:246–263CrossRefPubMedGoogle Scholar
  40. Donoghue MJ, Doyle JA (2000) Seed plant phylogeny: demise of the anthophyte hypothesis? Curr Biol 10:106–109CrossRefGoogle Scholar
  41. Duchene AM, Marechal-Drouard L (2001) The chloroplast-derived trnW and trnM-e genes are not expressed in Arabidopsis mitochondria. Biochem Biophys Res Commun 285:1213–1216CrossRefPubMedGoogle Scholar
  42. Dyall SD, Brown MT, Johnson PJ (2004) Ancient invasions: from endosymbionts to organelles. Science 304:253–257CrossRefPubMedGoogle Scholar
  43. Figueroa P, Gomez I, Holuigue L, Araya A, Jordana X (1999) Transfer of rps14 from the mitochondrion to the nucleus in maize implied integration within a gene encoding the iron–sulphur subunit of succinate dehydrogenase and expression by alternative splicing. Plant J 18:601–609CrossRefPubMedGoogle Scholar
  44. Freyer R, Kiefer-Meyer MC, Kossel H (1997) Occurrence of plastid RNA editing in all major lineages of land plants. Proc Natl Acad Sci USA 94:6285–6290CrossRefPubMedGoogle Scholar
  45. Gamboa MA, Laureano S, Bayman P (2003) Measuring diversity of endophytic fungi in leaf fragments: does size matter? Mycopathologia 156:41–45CrossRefGoogle Scholar
  46. Geiss KT, Abbas GM, Makaroff CA (1994) Intron loss from the nadh sehydrogenase subunit 4 gene of lettuce mitochondrial DNA—evidence for homologous recombination of a cDNA intermediate. Mol Gen Genet 243:97–105Google Scholar
  47. Giege P, Brennicke A (1999) RNA editing in Arabidopsis mitochondria effects 441 C to U changes in ORFs. Proc Natl Acad Sci USA 96:15324–15329CrossRefPubMedGoogle Scholar
  48. Goremykin V, Bobrova V, Pahnke J, Troitsky A, Antonov A, Martin W (1996) Noncoding sequences from the slowly evolving chloroplast inverted repeat in addition to rbcL data do not support Gnetalean affinities of angiosperms. Mol Biol Evol 13:383–396PubMedGoogle Scholar
  49. Graham LE, Cook ME, Busse JS (2000) The origin of plants: body plan changes contributing to a major evolutionary radiation. Proc Natl Acad Sci USA 97:4535–4540CrossRefPubMedGoogle Scholar
  50. Gray MW (1999) Evolution of organellar genomes. Curr Opin Genet Dev 9:678–687CrossRefPubMedGoogle Scholar
  51. Gray MW, Lang BF, Cedergren R, Golding GB, Lemieux C, Sankoff D, Turmel M, Brossard N, Delage E, Littlejohn TG, Plante I, Rioux P, Saint-Louis D, Zhu Y, Burger G (1998) Genome structure and gene content in protist mitochondrial DNAs. Nucleic Acids Res 26:865–878CrossRefPubMedGoogle Scholar
  52. Gray MW, Burger G, Lang BF (1999) Mitochondrial evolution. Science 283:1476–1481CrossRefPubMedGoogle Scholar
  53. Gualberto JM, Lamattina L, Bonnard G, Weil JH, Grienenberger JM (1989) RNA editing in wheat mitochondria results in the conservation of protein sequences. Nature 341:660–662CrossRefPubMedGoogle Scholar
  54. Gugerli F, Sperisen C, Buchler U, Brunner I, Brodbeck S, Palmer JD, Qiu YL (2001) The evolutionary split of Pinaceae from other conifers: evidence from an intron loss and a multigene phylogeny. Mol Phylogenet Evol 21:167–175CrossRefPubMedGoogle Scholar
  55. Handa H (2003) The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L.): comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana. Nucleic Acids Res 31:5907–5916CrossRefPubMedGoogle Scholar
  56. Handa H, Itani K, Sato H (2002) Structural features and expression analysis of a linear mitochondrial plasmid in rapeseed (Brassica napus L.). Mol Genet Genomics 267:797–805CrossRefPubMedGoogle Scholar
  57. Hashimoto K, Sato N (2001) Characterization of the mitochondrial nad7 gene in Physcomitrella patens: similarity with angiosperm nad7 genes. Plant Sci 160:807–815CrossRefPubMedGoogle Scholar
  58. Heazlewood JL, Whelan J, Millar AH (2003) The products of the mitochondrial orf25 and orfB genes are FO components in the plant F1FO ATP synthase. FEBS Lett 540:201–205Google Scholar
  59. Hiesel R, Wissinger B, Schuster W, Brennicke A (1989) RNA editing in plant mitochondria. Science 246:1632–1634PubMedGoogle Scholar
  60. Hiesel R, Combettes B, Brennicke A (1994a) Evidence for RNA editing in mitochondria of all major groups of land plants except the Bryophyta. Proc Natl Acad Sci USA 91:629–633Google Scholar
  61. Hiesel R, Haeseler A von, Brennicke A (1994b) Plant mitochondrial nucleic acid sequences as a tool for phylogenetic analysis. Proc Natl Acad Sci USA 91:634–638Google Scholar
  62. Huang CY, Ayliffe MA, Timmis JN (2003) Direct measurement of the transfer rate of chloroplast DNA into the nucleus. Nature 422:72–76CrossRefPubMedGoogle Scholar
  63. Itchoda N, Nishizawa S, Nagano H, Kubo T, Mikami T (2002) The sugar beet mitochondrial nad4 gene: an intron loss and its phylogenetic implication in the Caryophyllales. Theor Appl Genet 104:209–213CrossRefPubMedGoogle Scholar
  64. Joly S, Brouillet L, Bruneau A (2001) Phylogenetic implications of the multiple losses of the mitochondrial coxII.i3 intron in the angiosperms. Int J Plant Sci 162:359–373CrossRefGoogle Scholar
  65. Kadowaki KI, Kubo N, Ozawa K, Hirai A (1996) Targeting presequence acquisition after mitochondrial gene transfer to the nucleus occurs by duplication of existing targeting signals. EMBO J 15:6652–6661PubMedGoogle Scholar
  66. Karol KG, McCourt RM, Cimino MT, Delwiche CF (2001) The closest living relatives of land plants. Science 294:2351–2353CrossRefPubMedGoogle Scholar
  67. Kenrick P, Crane PR (1997a) A cladistic study. Smithsonian Institution, Washington, D.C.Google Scholar
  68. Kenrick P, Crane PR (1997b) The origin and early evolution of plants on land. Nature 389:33–39CrossRefGoogle Scholar
  69. Klein M, Eckert-Ossenkopp U, Schmiedeberg I, Brandt P, Unseld M, Brennicke A, Schuster W (1994) Physical mapping of the mitochondrial genome of Arabidopsis thaliana by cosmid and YAC clones. Plant J 6:447–455Google Scholar
  70. Knoop V, Brennicke A (1991) A mitochondrial intron sequence in the 5′-flanking region of a plant nuclear lectin gene. Curr Genet 20:423–425PubMedGoogle Scholar
  71. Knoop V, Brennicke A (1994) Promiscuous mitochondrial group II intron sequences in plant nuclear genomes. J Mol Evol 39:144–150Google Scholar
  72. Knoop V, Schuster W, Wissinger B, Brennicke A (1991) Trans splicing integrates an exon of 22 nucleotides into the nad5 mRNA in higher plant mitochondria. EMBO J 10:3483–3493PubMedGoogle Scholar
  73. Knoop V, Ehrhardt T, Lattig K, Brennicke A (1995) The gene for ribosomal protein S10 is present in mitochondria of pea and potato but absent from those of Arabidopsis and Oenothera. Curr Genet 27:559–564PubMedGoogle Scholar
  74. Knoop V, Unseld M, Marienfeld J, Brandt P, Sunkel S, Ullrich H, Brennicke A (1996) copia-, gypsy- and LINE-like retrotransposon fragments in the mitochondrial genome of Arabidopsis thaliana. Genetics 142:579–585PubMedGoogle Scholar
  75. Knoop V, Altwasser M, Brennicke A (1997) A tripartite group II intron in mitochondria of an angiosperm plant. Mol Gen Genet 255:269–276CrossRefPubMedGoogle Scholar
  76. Kobayashi Y, Knoop V, Fukuzawa H, Brennicke A, Ohyama K (1997) Interorganellar gene transfer in bryophytes: the functional nad7 gene is nuclear encoded in Marchantia polymorpha. Mol Gen Genet 256:589–592CrossRefPubMedGoogle Scholar
  77. Kolukisaoglu HU, Marx S, Wiegmann C, Hanelt S, Schneider-Poetsch HA (1995) Divergence of the phytochrome gene family predates angiosperm evolution and suggests that Selaginella and Equisetum arose prior to Psilotum. J Mol Evol 41:329–337PubMedGoogle Scholar
  78. Koulintchenko M, Konstantinov Y, Dietrich A (2003) Plant mitochondria actively import DNA via the permeability transition pore complex. EMBO J 22:1245–1254CrossRefPubMedGoogle Scholar
  79. Kroymann J, Zetsche K (1998) The mitochondrial genome of Chlorogonium elongatum inferred from the complete sequence. J Mol Evol 47:431–440PubMedGoogle Scholar
  80. Kubo T, Nishizawa S, Sugawara A, Itchoda N, Estiati A, Mikami T (2000) The complete nucleotide sequence of the mitochondrial genome of sugar beet (Beta vulgaris L.) reveals a novel gene for tRNA(Cys)(GCA). Nucleic Acids Res 28:2571–2576CrossRefPubMedGoogle Scholar
  81. Kubo N, Arimura S, Tsutsumi N, Hirai A, Kadowaki K (2003) Involvement of N-terminal region in mitochondrial targeting of rice RPS1O and RPS14 proteins. Plant Sci 164:1047–1055CrossRefGoogle Scholar
  82. Kudla J, Albertazzi FJ, Blazevic D, Hermann M, Bock R (2002) Loss of the mitochondrial cox2 intron 1 in a family of monocotyledonous plants and utilization of mitochondrial intron sequences for the construction of a nuclear intron. Mol Genet Genom 267:223–230CrossRefGoogle Scholar
  83. Kugita M, Kaneko A, Yamamoto Y, Takeya Y, Matsumoto T, Yoshinaga K (2003a) The complete nucleotide sequence of the hornwort (Anthoceros formosae) chloroplast genome: insight into the earliest land plants. Nucleic Acids Res 31:716–721CrossRefPubMedGoogle Scholar
  84. Kugita M, Yamamoto Y, Fujikawa T, Matsumoto T, Yoshinaga K (2003b) RNA editing in hornwort chloroplasts makes more than half the genes functional. Nucleic Acids Res 31:2417–2423CrossRefPubMedGoogle Scholar
  85. Kumar R, Marechal-Drouard L, Akama K, Small I (1996) Striking differences in mitochondrial tRNA import between different plant species. Mol Gen Genet 252:404–411CrossRefPubMedGoogle Scholar
  86. Lemieux C, Otis C, Turmel M (2000) Ancestral chloroplast genome in Mesostigma viride reveals an early branch of green plant evolution. Nature 403:649–652CrossRefPubMedGoogle Scholar
  87. Ligrone R, Pocock K, Duckett JG (1993) A comparative ultrastructural-study of endophytic basidiomycetes in the parasitic achlorophyllous hepatic Cryptothallus mirabilis and the closely allied photosynthetic species Aneura pinguis (Metzgeriales). Can J Bot 71:666–679Google Scholar
  88. Lilly JW, Havey MJ (2001) Small, repetitive DNAs contribute significantly to the expanded mitochondrial genome of cucumber. Genetics 159:317–328PubMedGoogle Scholar
  89. Magallon S, Sanderson MJ (2002) Relationships among seed plants inferred from highly conserved genes: sorting conflicting phylogenetic signals among ancient lineages. Am J Bot 89:1991–2006Google Scholar
  90. Malek O, Knoop V (1998) Trans-splicing group II introns in plant mitochondria: the complete set of cis-arranged homologs in ferns, fern allies, and a hornwort. RNA 4:1599–1609CrossRefPubMedGoogle Scholar
  91. Malek O, Lättig K, Hiesel R, Brennicke A, Knoop V (1996) RNA editing in bryophytes and a molecular phylogeny of land plants. EMBO J 15:1403–1411PubMedGoogle Scholar
  92. Malek O, Brennicke A, Knoop V (1997) Evolution of trans-splicing plant mitochondrial introns in pre-Permian times. Proc Natl Acad Sci USA 94:553–558CrossRefPubMedGoogle Scholar
  93. Manhart JR, Palmer JD (1990) The gain of two chloroplast tRNA introns marks the green algal ancestors of land plants. Nature 345:268–270CrossRefPubMedGoogle Scholar
  94. Marchfelder A, Brennicke A, Binder S (1996) RNA editing is required for efficient excision of tRNA(Phe) from precursors in plant mitochondria. J Biol Chem 271:1898–1903CrossRefPubMedGoogle Scholar
  95. Marechal-Drouard L, Guillemaut P, Cosset A, Arbogast M, Weber F, Weil JH, Dietrich A (1990) Transfer RNAs of potato (Solanum tuberosum) mitochondria have different genetic origins. Nucleic Acids Res 18:3689–3696PubMedGoogle Scholar
  96. Marechal-Drouard L, Cosset A, Remacle C, Ramamonjisoa D, Dietrich A (1996a) A single editing event is a prerequisite for efficient processing of potato mitochondrial phenylalanine tRNA. Mol Cell Biol 16:3504–3510PubMedGoogle Scholar
  97. Marechal-Drouard L, Kumar R, Remacle C, Small I (1996b) RNA editing of larch mitochondrial tRNA(His) precursors is a prerequisite for processing. Nucleic Acids Res 24:3229–3234CrossRefPubMedGoogle Scholar
  98. Michel F, Ferat JL (1995) Structure and activities of group II introns. Annu Rev Biochem 64:435–461CrossRefPubMedGoogle Scholar
  99. Milligan BG, Hampton JN, Palmer JD (1989) Dispersed repeats and structural reorganization in subclover chloroplast DNA. Mol Biol Evol 6:355–368PubMedGoogle Scholar
  100. Nakazono M, Itadani H, Wakasugi T, Tsutsumi N, Sugiura M, Hirai A (1995) The rps3-rpl16-nad3-rps12 gene cluster in rice mitochondrial DNA is transcribed from alternative promoters. Curr Genet 27:184–189PubMedGoogle Scholar
  101. Nedelcu AM (1997) Fragmented and scrambled mitochondrial ribosomal RNA coding regions among green algae: a model for their origin and evolution. Mol Biol Evol 14:506–517PubMedGoogle Scholar
  102. Nedelcu AM, Lee RW, Lemieux C, Gray MW, Burger G (2000) The complete mitochondrial DNA sequence of Scenedesmus obliquus reflects an intermediate stage in the evolution of the green algal mitochondrial genome. Genome Res 10:819–831CrossRefPubMedGoogle Scholar
  103. Nickrent DL, Parkinson CL, Palmer JD, Duff RJ (2000) Multigene phylogeny of land plants with special reference to bryophytes and the earliest land plants. Mol Biol Evol 17:1885–1895PubMedGoogle Scholar
  104. Notsu Y, Masood S, Nishikawa T, Kubo N, Akiduki G, Nakazono M, Hirai A, Kadowaki K (2002) The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants. Mol Genet Genomics 268:434–445CrossRefPubMedGoogle Scholar
  105. Nugent JM, Palmer JD (1991) RNA-mediated transfer of the gene coxII from the mitochondrion to the nucleus during flowering plant evolution. Cell 66:473–481CrossRefPubMedGoogle Scholar
  106. Oda K, Yamato K, Ohta E, Nakamura Y, Takemura M, Nozato N, Akashi K, Kanegae T, Ogura Y, Kohchi T (1992) Gene organization deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA. A primitive form of plant mitochondrial genome. J Mol Biol 223:1–7PubMedGoogle Scholar
  107. Ohta E, Oda K, Yamato K, Nakamura Y, Takemura M, Nozato N, Akashi K, Ohyama K, Michel F (1993) Group-I introns in the liverwort mitochondrial genome—the gene coding for subunit-1 of cytochrome-oxidase shares 5 intron positions with its fungal counterparts. Nucleic Acids Res 21:1297–1305PubMedGoogle Scholar
  108. Ohyama K, Oda K, Ohta E, Takemura M (1993). Plant mitochondria. VCH, Weinheim, pp 115–129Google Scholar
  109. Oldenburg DJ, Bendich AJ (2001) Mitochondrial DNA from the liverwort Marchantia polymorpha: circularly permuted linear molecules, head-to-tail concatemers, and a 5′ protein. J Mol Biol 310:549–562CrossRefPubMedGoogle Scholar
  110. Palmer JD (1990) Contrasting modes and tempos of genome evolution in land plant organelles. Trends Genet 6:115–120CrossRefPubMedGoogle Scholar
  111. Palmer JD, Herbon LA (1987) Unicircular structure of the Brassica hirta mitochondrial genome. Curr Genet 11:565–570PubMedGoogle Scholar
  112. Palmer JD, Herbon LA (1988) Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence. J Mol Evol 28:87–97PubMedGoogle Scholar
  113. Palmer JD, Shields CR (1984) Tripartite structure of the Brassica campestris mitochondrial genome. Nature 307:437–440Google Scholar
  114. Palmer JD, Soltis D, Soltis P (1992) Large size and complex structure of mitochondrial DNA in two nonflowering land plants. Curr Genet 21:125–129PubMedGoogle Scholar
  115. Palmer JD, Adams KL, Cho Y, Parkinson CL, Qiu YL, Song K (2000) Dynamic evolution of plant mitochondrial genomes: mobile genes and introns and highly variable mutation rates. Proc Natl Acad Sci USA 97:6960–6966CrossRefPubMedGoogle Scholar
  116. Pereira DS, Jubier MF, Delcher E, Lancelin D, Lejeune B (1991) A trans-splicing model for the expression of the tripartite nad5 gene in wheat and maize mitochondria. Plant Cell 3:1363–1378CrossRefPubMedGoogle Scholar
  117. Pla M, Mathieu C, DePaepe R, Chetrit P, Vedel F (1995) Deletion of the last 2 exons of the mitochondrial Nad7 gene results in lack of the nad7 polypeptide in a Nicotiana sylvestris Cms mutant. Mol Gen Genet 248:79–88PubMedGoogle Scholar
  118. Pruchner D, Nassal B, Schindler M, Knoop V (2001) Mosses share mitochondrial group II introns with flowering plants, not with liverworts. Mol Genet Genom 266:608–613CrossRefGoogle Scholar
  119. Pruchner D, Beckert S, Muhle H, Knoop V (2002) Divergent intron conservation in the mitochondrial nad2 gene: signatures for the three bryophyte classes (mosses, liverworts, and hornworts) and the lycophytes. J Mol Evol 55:265–271CrossRefPubMedGoogle Scholar
  120. Pryer KM, Schneider H, Smith AR, Cranfill R, Wolf PG, Hunt JS, Sipes SD (2001) Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature 409:618–622CrossRefPubMedGoogle Scholar
  121. Pryer KM, Schneider H, Zimmer EA, Ann BJ (2002) Deciding among green plants for whole genome studies. Trends Plant Sci 7:550–554CrossRefPubMedGoogle Scholar
  122. Qiu YL, Palmer JD (1999) Phylogeny of early land plants: insights from genes and genomes. Trends Plant Sci 4:26–30CrossRefPubMedGoogle Scholar
  123. Qiu YL, Cho YR, Cox JC, Palmer JD (1998) The gain of three mitochondrial introns identifies liverworts as the earliest land plants. Nature 394:671–674CrossRefPubMedGoogle Scholar
  124. Qiu YL, Lee J, Whitlock BA, Bernasconi-Quadroni F, Dombrovska O (2001) Was the ANITA rooting of the angiosperm phylogeny affected by long-branch attraction? Amborella, Nymphaeales, Illiciales, Trimeniaceae, and Austrobaileya. Mol Biol Evol 18:1745–1753PubMedGoogle Scholar
  125. Qiu YL, Dombrovska O, Palmer JD (2004) Many independent evolutions of trans-splicing of a plant mitochondrial group II intron. J Mol Evol (in press)Google Scholar
  126. Raubeson LA, Jansen RK (1992) Chloroplast DNA evidence on the ancient evolutionary split in vascular land plants. Science 255:1697–1699Google Scholar
  127. Read DJ, Duckett JG, Francis R, Ligrone R, Russell A (2000) Symbiotic fungal associations in ‘lower’ land plants. Philos Trans R Soc Lond B Biol Sci 355:815–830CrossRefPubMedGoogle Scholar
  128. Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921CrossRefPubMedGoogle Scholar
  129. Renzaglia KS, Duff RJ, Nickrent DL, Garbary DJ (2000) Vegetative and reproductive innovations of early land plants: implications for a unified phylogeny. Philos Trans R Soc Lond B Biol Sci 355:769–793CrossRefPubMedGoogle Scholar
  130. Rydin C, Kallersjo M, Friist EM (2002) Seed plant relationships and the systematic position of Gnetales based on nuclear and chloroplast DNA: conflicting data, rooting problems, and the monophyly of conifers. Int J Plant Sci 163:197–214CrossRefGoogle Scholar
  131. Sabar M, Gagliardi D, Balk J, Leaver CJ (2003) ORFB is a subunit of F(1)F(O)-ATP synthase: insight into the basis of cytoplasmic male sterility in sunflower. EMBO Rep 4:1–6CrossRefGoogle Scholar
  132. Sanchez H, Fester T, Kloska S, Schroder W, Schuster W (1996) Transfer of rps19 to the nucleus involves the gain of an RNP-binding motif which may functionally replace RPS13 in Arabidopsis mitochondria. EMBO J 15:2138–2149PubMedGoogle Scholar
  133. Sandoval P, Leon G, Gomez I, Carmona R, Figueroa P, Holuigue L, Araya A, Jordana X (2004) Transfer of RPS14 and RPL5 from the mitochondrion to the nucleus in grasses. Gene 324:139–147CrossRefPubMedGoogle Scholar
  134. Schafer B, Kaulich K, Wolf K (1998) Mosaic structure of the cox2 gene in the petite negative yeast Schizosaccharomyces pombe: a group II intron is inserted at the same location as the otherwise unrelated group II introns in the mitochondria of higher plants. Gene 214:101–112CrossRefPubMedGoogle Scholar
  135. Schock I, Marechal-Drouard L, Marchfelder A, Binder S (1998) Processing of plant mitochondrial tRNAGly and tRNASer(GCU) is independent of RNA editing. Mol Gen Genet 257:554–560CrossRefPubMedGoogle Scholar
  136. Schuster W, Hiesel R, Wissinger B, Brennicke A (1990) RNA editing in the cytochrome b locus of the higher plant Oenothera berteriana includes a U-to-C transition. Mol Cell Biol 10:2428–2431PubMedGoogle Scholar
  137. Scotti N, Marechal-Drouard L, Cardi T (2004) The rpl5-rps14 mitochondrial region: a hot spot for DNA rearrangements in Solanum spp somatic hybrids. Curr Genet 45:378–382CrossRefPubMedGoogle Scholar
  138. Small I, Suffolk R, Leaver CJ (1989) Evolution of plant mitochondrial genomes via substoichiometric intermediates. Cell 58:69–76CrossRefPubMedGoogle Scholar
  139. Sperwhitis GL, Russell AL, Vaughn JC (1994) Mitochondrial RNA editing of cytochrome-c-oxidase subunit II (CoxII) in the primitive vascular plant Psilotum nudum. Biochem Biophys Acta Gene Struct Expr 1218:218–220CrossRefGoogle Scholar
  140. Sperwhitis GL, Moody JL, Vaughn JC (1996) Universality of mitochondrial RNA editing in cytochrome-c oxidase subunit I (coxI) among the land plants. Biochem Biophys Acta Gene Struct Expr 1307:301–308CrossRefGoogle Scholar
  141. Stegemann S, Hartmann S, Ruf S, Bock R (2003) High-frequency gene transfer from the chloroplast genome to the nucleus. Proc Natl Acad Sci USA (in press) Google Scholar
  142. Steinhauser S, Beckert S, Capesius I, Malek O, Knoop V (1999) Plant mitochondrial RNA editing. J Mol Evol 48:303–312PubMedGoogle Scholar
  143. Stern DB, Lonsdale DM (1982) Mitochondrial and chloroplast genomes of maize have a 12-kilobase DNA sequence in common. Nature 299:698–702PubMedGoogle Scholar
  144. Stupar RM, Lilly JW, Town CD, Cheng Z, Kaul S, Buell CR, Jiang J (2001) Complex mtDNA constitutes an approximate 620-kb insertion on Arabidopsis thaliana chromosome 2: implication of potential sequencing errors caused by large-unit repeats. Proc Natl Acad Sci USA 98:5099–5103CrossRefPubMedGoogle Scholar
  145. Timmis JN, Ayliffe MA, Huang CY, Martin W (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5:123–U16CrossRefPubMedGoogle Scholar
  146. Toor N, Zimmerly S (2002) Identification of a family of group II introns encoding LAGLIDADG ORFs typical of group I introns. RNA 8:1373–1377CrossRefPubMedGoogle Scholar
  147. Tsudzuki T, Wakasugi T, Sugiura M (2001) Comparative analysis of RNA editing sites in higher plant chloroplasts. J Mol Evol 53:327–332CrossRefPubMedGoogle Scholar
  148. Turmel M, Choquet Y, Goldschmidt-Clermont M, Rochaix JD, Otis C, Lemieux C (1995) The trans-spliced intron 1 in the psaA gene of the Chlamydomonas chloroplast: a comparative analysis. Curr Genet 27:270–279PubMedGoogle Scholar
  149. Turmel M, Lemieux C, Burger G, Lang BF, Otis C, Plante I, Gray MW (1999) The complete mitochondrial DNA sequences of Nephroselmis olivacea and Pedinomonas minor. Two radically different evolutionary patterns within green algae. Plant Cell 11:1717–1730CrossRefPubMedGoogle Scholar
  150. Turmel M, Otis C, Lemieux C (2002a) The chloroplast and mitochondrial genome sequences of the charophyte Chaetosphaeridium globosum: insights into the timing of the events that restructured organelle DNAs within the green algal lineage that led to land plants. Proc Natl Acad Sci USA 99:11275–11280CrossRefPubMedGoogle Scholar
  151. Turmel M, Otis C, Lemieux C (2002b) The complete mitochondrial DNA sequence of Mesostigma viride identifies this green alga as the earliest green plant divergence and predicts a highly compact mitochondrial genome in the ancestor of all green plants. Mol Biol Evol 19:24–38PubMedGoogle Scholar
  152. Turmel M, Otis C, Lemieux C (2003) The mitochondrial genome of Chara vulgaris: insights into the mitochondrial DNA architecture of the last common ancestor of green algae and land plants. Plant Cell 15:1888–1903CrossRefPubMedGoogle Scholar
  153. Ullrich H, Lattig K, Brennicke A, Knoop V (1997) Mitochondrial DNA variations and nuclear RFLPs reflect different genetic similarities among 23 Arabidopsis thaliana ecotypes. Plant Mol Biol 33:37–45CrossRefPubMedGoogle Scholar
  154. Unseld M, Marienfeld JR, Brandt P, Brennicke A (1997) The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nat Genet 15:57–61PubMedGoogle Scholar
  155. Vangerow S, Teerkorn T, Knoop V (1999) Phylogenetic information in the mitochondrial nad5 gene of pteridophytes: RNA editing and intron sequences. Plant Biol 1:235–243Google Scholar
  156. Vaughn JC, Mason MT, Sperwhitis GL, Kuhlman P, Palmer JD (1995) Fungal origin by horizontal transfer of a plant mitochondrial group-i intron in the chimeric coxi gene of peperomia. J Mol Evol 41:563–572PubMedGoogle Scholar
  157. Ward BL, Anderson RS, Bendich AJ (1981) The mitochondrial genome is large and variable in a family of plants (Cucurbitaceae). Cell 25:793–803CrossRefPubMedGoogle Scholar
  158. Wellman CH, Gray J (2000) The microfossil record of early land plants. Philos Trans R Soc Lond B Biol Sci 355:717–731CrossRefPubMedGoogle Scholar
  159. Wischmann C, Schuster W (1995) Transfer of Rps10 from the mitochondrion to the nucleus in Arabidopsis thaliana. Evidence for RNA-mediated transfer and exon shuffling at the integration site. FEBS Lett 374:152–156CrossRefPubMedGoogle Scholar
  160. Wissinger B, Schuster W, Brennicke A (1991) Trans splicing in Oenothera mitochondria: nad1 mRNAs are edited in exon and trans-splicing group II intron sequences. Cell 65:473–482PubMedGoogle Scholar
  161. Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058PubMedGoogle Scholar
  162. Wolff G, Burger G, Lang BF, Kuck U (1993) Mitochondrial genes in the colorless alga Prototheca wickerhamii resemble plant genes in their exons but fungal genes in their introns. Nucleic Acids Res 21:719–726PubMedGoogle Scholar
  163. Wolff G, Plante I, Lang BF, Kuck U, Burger G (1994) Complete sequence of the mitochondrial DNA of the chlorophyte alga Prototheca wickerhamii. Gene content and genome organization. J Mol Biol 237:75–86Google Scholar
  164. Won H, Renner SS (2003) Horizontal gene transfer from flowering plants to Gnetum. Proc Natl Acad Sci USA 100:10824–10829CrossRefPubMedGoogle Scholar
  165. Yoshinaga K, Iinuma H, Masuzawa T, Uedal K (1996) Extensive RNA editing of U to C in addition to C to U substitution in the rbcL transcripts of hornwort chloroplasts and the origin of RNA editing in green plants. Nucleic Acids Res 24:1008–1014CrossRefPubMedGoogle Scholar
  166. Zanis MJ, Soltis DE, Soltis PS, Mathews S, Donoghue MJ (2002) The root of the angiosperms revisited. Proc Natl Acad Sci USA 99:6848–6853CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.IZMB—Institut für Zelluläre und Molekulare BotanikUniversität BonnBonnGermany

Personalised recommendations