Current Genetics

, Volume 46, Issue 4, pp 193–204 | Cite as

Cryptococcus neoformans mitochondrial genomes from serotype A and D strains do not influence virulence

  • Dena L. Toffaletti
  • Kirsten Nielsen
  • Fred Dietrich
  • Joseph Heitman
  • John R. PerfectEmail author
Research Article


Cryptococcus neoformans is an encapsulated pathogenic yeast producing meningoencephalitis. Two primary strains in genetic studies, serotype A H99 and serotype D JEC21, possess dramatic differences in virulence. Since it has been shown that mitochondrial gene expression is prominent at the site of the infection and there are significant differences between mitochondrial gene structure and regulation between the serotype A and D strains, this study used AD hybrids to move serotype A and D mitochondria under different genomic influences. When the serotype D MATa strain is involved in the mating crosses, there is uniparental transmission of mitochondrial DNA, but with the serotype A MATa strain, mitochondrial DNA can be inherited from either parent and recombination in the mitochondrial genome may also occur. In virulence studies between serotype A and D strains, it was found that the primary genetic control of the virulence composite for growth in the central nervous system is encoded in the nuclear DNA and not through mitochondrial DNA.


Cryptococcus neoformans Hybrids Inheritance Mitochondria Virulence 



This work was supported by National Institute for Allergy and Infectious Disease (NIAID)-sponsored grants (AI 28388, AI 44975) and as a part of the Duke University Mycology Research Unit.


  1. Alspaugh JA, Perfect JR, Heitman J (1997) Cryptococcus neoformans mating and virulence are regulated by the G-protein alpha subunit GPA1 and cAMP. Genes Dev 11:3206–3217PubMedGoogle Scholar
  2. Alspaugh JA, Cavallo LM, Perfect JR, Heitman J (2000) RAS1 regulates filamentation, mating, and growth at high temperature of Cryptococcus neoformans. Mol Microbiol 36:352–365CrossRefPubMedGoogle Scholar
  3. Bastide PY de la, Horgen PA (2003) Mitochondrial inheritance and the detection of non-parental mitochondrial DNA haplotypes in crosses of Agaricus bisporus homokaryons. Fungal Genet Biol 38:333–342CrossRefPubMedGoogle Scholar
  4. Belcour L (1975) Cytoplasmic mutations isolated from protoplasts in Podospora anserina. Genet Res 25:155–161PubMedGoogle Scholar
  5. Belcour L (2000) A circular mitochondrial plasmid incites hypovirulence in some strains of Cryphonectria parasitica. Curr Genet 37:242–256CrossRefPubMedGoogle Scholar
  6. Chang Y, Kwon-Chung KJ (1994) Complementation of a capsule-deficient mutation of Cryptococcus neoformans restores its virulence. Mol Cell Biol 14:4912–4919Google Scholar
  7. Chang YC, Penoyer LA, Kwon-Chung KJ (1996) The second capsule gene of Cryptococcus neoformans, CAP64, is essential for virulence. Infect Immun 64:1977–1983PubMedGoogle Scholar
  8. Chang YC, Wickes BL, Miller GF, Penoyer LA, Kwon-Chung KJ (2000) Cryptococcus neoformans STE12 alpha regulates virulence but is not essential for mating. J Exp Med 191:871–882CrossRefPubMedGoogle Scholar
  9. Chang YC, Penoyer LA, Kwon-Chung KJ (2001) The second STE12 homologue of Cryptococcus neoformans is MATa-specific and plays an important role in virulence. Proc Natl Acad Sci USA 98:3258–3263CrossRefPubMedGoogle Scholar
  10. Cox GM, Mukherjee J, Cole GT, Casadevall A, Perfect JR (2000) Urease as a virulence factor in experimental cryptococcosis. Infect Immun 68:443–448CrossRefPubMedGoogle Scholar
  11. Cox GM, McDade HC, Chen SC, et al (2001) Extracellular phospholipase activity is a virulence factor for Cryptococcus neoformans. Mol Microbiol 39:166–175CrossRefPubMedGoogle Scholar
  12. Cox GM, Harrison TS, Taborda CP, McDade HC, Heinrich G, Casadevall A, Perfect JR (2003) Superoxide dismutase influences the virulence of Cryptococcus neoformans by affecting growth within macrophages. Infect Immun 71:173–180CrossRefPubMedGoogle Scholar
  13. D’Souza CA, Alspaugh JA, Yue C, Harashima T, Cox GM, Perfect JR, Heitman J (2001) Cyclic-AMP-dependent protein kinase controls virulence of the fungal pathogen, C. neoformans. Mol Cell Biol 21:3179–3191CrossRefPubMedGoogle Scholar
  14. DiMauro S, Schon EA (2003) Mechanisms of disease: mitochondrial respiratory-chain diseases. N Engl J Med 348:2656–2668CrossRefPubMedGoogle Scholar
  15. Erickson T, Liu L, Gueylkian A, Zhu X, Gibbons J, Williamson PR (2001) Multiple virulence factors of Cryptococcus neoformans are dependent on VPH1. Mol Microbiol 42:1121–1131CrossRefPubMedGoogle Scholar
  16. Fujimura H, Sakuma Y (1993) Simplified isolation of chromosomal and plasmid DNA from yeasts. Biotechniques 14:538–540PubMedGoogle Scholar
  17. Kwon-Chung KJ, Edman JC, Wickes BL (1992) Genetic association of mating types and virulence in Cryptococcus neoformans. Infect Immun 60:602–605PubMedGoogle Scholar
  18. Lee SB, Taylor JW (1993) Uniparental inheritance and replacement of mitochondrial DNA in Neurospora tetrasperma. Genetics 134:1063–1075PubMedGoogle Scholar
  19. Lengeler KB, Wang P, Cox GM, Perfect JR, Heitman J (2000) Identification of the MATa mating type locus of Cryptococcus reveals a serotype A MATa strain thought to have been extinct. Proc Nat Acad Sci USA 97:14455–14460CrossRefPubMedGoogle Scholar
  20. Lengeler KB, Cox GM, Heitman J (2001) Serotype AD strains of C. neoformans are diploid or aneuploid and are heterozygous at the mating-type locus. Infect Immun 69:115–122CrossRefPubMedGoogle Scholar
  21. Luberto C, Toffaletti DL, Wills EA, Tucker SC, Casadevall A, Perfect JR, Hannum YA, Del Poeta M (2001) Roles for inositol-phosphorylceramide synthase 1 (IPC1) in pathogenesis of C. neoformans. Genes Dev 15:201–212CrossRefPubMedGoogle Scholar
  22. Luberto C, Taraskiewicz D, Martinez-Marino B, Bolanos B, Chitano P, Toffaletti DL, Cox GM, Perfect JR, Hannun YA, Balish E, Del Poeta M (2003) IPC1 regulates the phagocytosis of Cryptococcus neoformans by macrophages through modulation of the antipagocytic protein (APP1) phagocytosis and pathogenicity: when host takes control. J Clin Invest 112:1080–1094CrossRefPubMedGoogle Scholar
  23. Mannella CA, Pittenger TH, Lambowitz AM (1979) Transmission of mitochondrial deoxyribonucleic acid in Neurospora crassa sexual crosses. J Bacteriol 137:1449–1451PubMedGoogle Scholar
  24. Martinez LR, Garcia-Rivera J, Casadevall A (2001) Cryptococcus neoformans var. neoformans (serotype D) strains are more susceptible to heat than C. neoformans var. grubii (serotype A strains). J Clin Microbiol 39:3365–3367CrossRefPubMedGoogle Scholar
  25. Mason JR, Turner G (1975) Transmission and recombination of extranuclear genes during sexual crosses in Aspergillus nidulans. Mol Gen Genet 143:93–99PubMedGoogle Scholar
  26. May G, Taylor JW (1988) Patterns of mating and mitochondrial DNA inheritance in the agaric Basidiomycete Coprinus cinereus. Genetics 118:213–220PubMedGoogle Scholar
  27. Miletti KE, Leibowitz MJ (2000) Pentamidine inhibition of Group I intron splicing in Candida albicans correlates with growth inhibition. Antimicrob Agents Chemother 44:958–966CrossRefPubMedGoogle Scholar
  28. Neuveglise C, Brygoo Y, Riba G (1997) 28s rDNA group-I introns: a powerful tool for identifying strains of Beauveria brongniartii. Mol Ecol 6:373–381CrossRefPubMedGoogle Scholar
  29. Nielsen K, Cox GM, Wang P, Toffaletti DL, Perfect JR, Heitman J (2003) Establishment of the sexual cycle of Cryptococcus neoformans variety grubii and virulence of congenic a and alpha isolates. Infect Immun 71:4831–4841CrossRefPubMedGoogle Scholar
  30. Nyhus KJ, Ozaki LS, Jacobson ES (2002) Role of mitochondrial carrier protein Mrs 3/4 in iron acquisition and oxidative stress resistance of Cryptococcus neoformans. Med Mycol 40:581–591PubMedGoogle Scholar
  31. Odom A, Muir S, Lim E, Toffaletti DL, Perfect JR, Heitman J (1997) Calcineurin is required for virulence of Cryptococcus neoformans. EMBO J 16:2576–2589Google Scholar
  32. Olson A, Stenlid J (2001) Plant pathogens. Mitochondrial control of fungal hybrid virulence. Nature 411:438CrossRefPubMedGoogle Scholar
  33. Osiewacz HD, Kimpel E (1999) Mitochondrial–nuclear interactions and life span control in fungi. Exp Gerontol 34:901–909CrossRefPubMedGoogle Scholar
  34. Perfect JR (1989) Cryptococcosis. Infect Dis Clin North Am 3:77–102PubMedGoogle Scholar
  35. Perfect JR, Casadevall A (2002) Cryptococcosis. Infect Dis Clin North Am 16:837–874PubMedGoogle Scholar
  36. Perfect JR, Lang SDR, Durack DT (1980) Chronic cryptococcal meningitis: a new experimental model in rabbits. Am J Pathol 101:177–194PubMedGoogle Scholar
  37. Pon L, Schatz G (1991) Biogenesis of yeast mitochondria. In: Broach JR, Pringle JR, Jones EW (eds) The molecular and cellular biology of the yeast Saccharomyces: genome dynamics, protein synthesis, and energetics, vol 1. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 333–406Google Scholar
  38. Salas SD, Bennett JE, Kwon-Chung KJ, Perfect JR, Williamson PR (1996) Effect of the laccase gene, CNLAC1, on virulence of Cryptococcus neoformans. J Exp Med 184:377–386CrossRefPubMedGoogle Scholar
  39. Specht CA, Novotny CP, Ullrich RC (1992) Mitochondrial DNA of Schizophyllum commune: restriction map, genetic map, and mode of inheritance. Curr Genet 22:129–134PubMedGoogle Scholar
  40. Steen B, Zuderdyns S, Toffaletti DL, Marra M, Jones SJM, Perfect JR, Kronstad J (2003) Analysis of Cryptococcus neoformans gene expression during experimental cryptococcal meningitis. Eukaryot Cell 2:1336–1349CrossRefPubMedGoogle Scholar
  41. Toffaletti DL, Del Poeta M, Rude TH, Dietrich FS, Perfect JR (2003) Regulation of cytochrome C oxidase subunit 1 (COX1) expression in Cryptococcus neoformans by temperature and host environment. Microbiology 149:1041–1049Google Scholar
  42. Wang P, Nichols CS, Lengeler KB, Cardenas ME, Cox GM, Perfect JR, Heitman J (2002) Mating type specific and nonspecific PAK kinases play shared and divergent role in cytokinesis, differentiation and virulence of Cryptococcus neoformans. Eukaryot Cell 1:257–272CrossRefPubMedGoogle Scholar
  43. Wilch G, Ward S, Castle A (1992) Transmission of mitochandrial DNA in Ustilago violacea. Curr Genet 22:135–140PubMedGoogle Scholar
  44. Wills EA, Roberts IS, Del Poeta M, Rivera J, Casadevall A, Cox GM, Perfect JR (2001) Identification and characterization of the Cryptococcus neoformans phosphomannose isomerase-encoding gene, MAN1, and its impact on pathogenicity. Mol Microbiol 40:610–620CrossRefPubMedGoogle Scholar
  45. Xu J, Vilgalys R, Mitchell TG (2002) Multiple gene genealogies reveal recent dispersion and hybridization in the human fungus, Cryptococcus neoformans. Mol Ecol 9:1471–1481CrossRefGoogle Scholar
  46. Yan Z, Xu JP (2003) Mitochondria are inherited from the MATa parent in crosses of the basidiomycete fungus Cryptococcus neoformans. Genetics 163:1315–1325PubMedGoogle Scholar
  47. Yost HJ, Lindquist S (1988) Translation of unspliced transcripts after heat shock. Science 242:1544–1548PubMedGoogle Scholar
  48. Yue C, Cavallo L, Alspaugh JA, Cox GM, Perfect JR, Heitman J (1999) The STE12α homolog is required for haploid filamentation but dispensable for mating and virulence in Cryptococcus neoformans. Genetics 153:1601–1615PubMedGoogle Scholar
  49. Zhang Y, Bell A, Perlman PS, Leibowitz MJ (2000) Pentamidine inhibits mitochondrial intron splicing and translation in Saccharomyces cervisiae. RNA 6:937–951CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Dena L. Toffaletti
    • 1
  • Kirsten Nielsen
    • 2
    • 3
  • Fred Dietrich
    • 2
  • Joseph Heitman
    • 2
    • 3
  • John R. Perfect
    • 1
    • 2
    Email author
  1. 1.Department of MedicineDuke University Medical CenterDurhamUSA
  2. 2.Department of Molecular Genetics and MicrobiologyDuke University Medical CenterDurhamUSA
  3. 3.Howard Hughes Medical InstituteDuke University Medical CenterDurhamUSA

Personalised recommendations