Current Genetics

, Volume 45, Issue 6, pp 360–370

Aneuploidy and copy number breakpoints in the genome of lager yeasts mapped by microarray hybridisation

  • Ursula Bond
  • Cassandra Neal
  • Dan Donnelly
  • Tharappel C. James
Research Article


Competitive comparative genome hybridisation (CCGH) to Saccharomyces cerevisiae DNA microarrays and quantitative real-time polymerase chain reaction (qRT-PCR) assays are used to examine the copy number of S. cerevisiae-like genes, at single gene resolution, of two bottom-fermenting lager yeast strains, CMBS-33 and 6701. Using the S. cerevisiae gene order for each chromosome, we observe that the copy number for contiguous groups of S. cerevisiae-like genes is similar in both strains. However, discrete changes in copy number occur at distinct loci, indicating the aneuploid nature of the lager yeast genomes. The majority of loci where copy number changes occur are conserved in both strains. We also identify a large segment of S. cerevisiae DNA on chromosome XVI that fails to hybridise to genomic DNA from both lager strains, suggesting that this region may have diverged significantly or is absent in the lager yeast strains. Furthermore, very low levels of mRNA transcripts are detected from this region of the genome. Interestingly, the increased gene copy number observed elsewhere (e.g. chromosome III) does not correlate specifically with increased gene expression under fermentation conditions, suggesting that dosage compensation may play a role in controlling gene expression in these strains.


Comparative competitive genome hybridisation Homeologous chromosomes Gene deletion Genome vs transcriptome Adaptive evolution 

Supplementary material

supp.pdf (1.9 mb)
(PDF 1.9 MB)


  1. Altschul F, Thomas M, Alejandro S, Jinghui Z, Zheng Z, Webb M, Lipman D (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedGoogle Scholar
  2. Andersen T, Hoffman L, Grifone R, Nilsson-Tillgren T, Kielland-Brandt M (1999) Brewing yeast genetics. Fachverlag Hans Carl, NurnbergGoogle Scholar
  3. Borsting C, Hummel R, Schultz E, Rose T, Pedersen M, Knudsen J, Kristiansen K (1997) Saccharomyces carlsbergensis contains two functional genes encoding acyl-CoA binding protein, one similar to the ACB1 gene from S. cerevisiae and one identical to the ACB1 genes from S. monacensis. Yeast 13:1409–1421CrossRefPubMedGoogle Scholar
  4. Casaregola S, Nguyen H, Lapathitis G, Kotyk G, Gaillardin C (2001) Analysis of the constitution of the beer yeast genome by PCR, sequencing and subtelomeric sequence hybridisation. Int J Syst Evol Microbiol 51:1607–1618PubMedGoogle Scholar
  5. Casey G (1986) Molecular and genetic analysis of chromosomes X in Saccharomyces carlsbergensis. Carlsberg Res Commun 51:343–362Google Scholar
  6. Casey G, Pedersen M (1988) DNA sequence polymorphisms in the genus Saccharomyces. V. Cloning and characterisation of a LEU2 gene from S. carlsbergensis. Carlsberg Res Commun 53:209–219PubMedGoogle Scholar
  7. Casey G, Pringle A, Erdmann P (1990) Evaluation of recent techniques used to identify individual strains of Saccharomyces yeasts. Am Soc Brew Chem J 48:100–106Google Scholar
  8. Cliften PF, Hillier LW, Fulton L, Graves T, Miner T, Gish WR, Waterston RH, Johnston M (2001) Surveying Saccharomyces genomes to identify functional elements by comparative DNA sequence analysis. Genome Res 11:1175–1186CrossRefPubMedGoogle Scholar
  9. Delneri D, Colson I, Grammenoudi S, Roberts IN, Louis EJ, Oliver SG (2003) Engineering evolution to study speciation in yeasts. Nature 422:68–72CrossRefPubMedGoogle Scholar
  10. Dunham MJ, Badrane H, Ferea T, Adams J, Brown PO, Rosenzweig F, Botstein D (2002) Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 99:16144–16149CrossRefPubMedGoogle Scholar
  11. Gentle A, Anastasopoulos F, McBrein NA (2001) High resolution semi-quantitative real-time PCR without the use of a standard curve. Biotechniques 31:502–508PubMedGoogle Scholar
  12. Hansen J, Kielland-Brandt MC (1994) Saccharomyces carlsbergensis contains two functional MET2 alleles similar to homologues from S. cerevisiae and S. monacensis. Gene 194:33–40CrossRefGoogle Scholar
  13. Hauser NC, Fellenberg K, Gil R, Bastuck S, Hoheisel JD, Pérez-Ortín JE (2001) Whole genome analysis of a wine yeast strain. Comp Funct Genome 2:69–79CrossRefGoogle Scholar
  14. Holmberg S (1982) Genetic differences between Saccharomyces carlsbergensis and S. cerevisiae II. Restriction endonuclease analysis of genes in chromosome III. Carlsberg Res Commun 47:233–244Google Scholar
  15. Hughes T, Roberts C, Day H, Jones A, Meyer M, Slade D, Burchard J, Dow S, Ward T, Kidd M, Friend S, Marton M (2000) Widespread aneuploidy revealed by DNA microarray expression profiling. Nat Genet 25:333–337PubMedGoogle Scholar
  16. Infante JJ, Dombek KM, Rebordinos L, Cantoral JM, Young ET (2003) Genome-wide amplifications caused by chromosomal rearrangements play a major role in the adaptive evolution of natural yeast. Genetics 165:1745–1759Google Scholar
  17. Ingham DJ, Beer S, Money S, Hansen G (2001) Quantitative real-time PCR assay for determining transgene copy number in transformed plants. Biotechniques 31:132–140PubMedGoogle Scholar
  18. James T, Campbell S, Bond U (2002) Comparative analysis of global gene expression in lager and laboratory yeast strains grown in wort. Proc IEEE 90:1887–1899CrossRefGoogle Scholar
  19. James T, Campbell S, Donnelly D, Bond U (2003) Transcription profile of brewery yeast under fermentation conditions. J Appl Microbiol 94:432–448CrossRefPubMedGoogle Scholar
  20. Jespersen L, Aa Kuhle A van der, Petersen KM (2000) Phenotypic and genetic diversity of Saccharomyces contaminants isolated from lager breweries and their phylogenetic relationship with brewing yeasts. Int J Food Microbiol 60:43–53CrossRefPubMedGoogle Scholar
  21. Joubert R, Strub J-M, Zugmeyer S, Kobi D, Carte N, Dorsselaer AV, Boucherie H, Jaquet-Gutfreund L (2001) Identification by mass spectrometry of two-dimensional gel electrophoresis-separated proteins extracted from lager brewing yeast. Electrophoresis 22:2969–2982CrossRefPubMedGoogle Scholar
  22. Kaiser C, Michaelis S, Mitchell A (1994) Methods in yeast genetics: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  23. Kellis M, Patterson N, Endrizzi M, Birren B, Lander E (2003) Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423:241–254CrossRefPubMedGoogle Scholar
  24. Kielland-Brandt M, Nilsson-Tillgren T, Gjermansen C, Holmberg S, Pedersen MB (1995) Genetics of brewing yeasts. Yeasts 6:224–254Google Scholar
  25. Kodama Y, Nakao Y, Nakamura N, Fujimura T, Shirahige K, Ashikari T (2003) Diversity of the chromosomal structure in lager brewing yeasts (abstract 16-4). Yeast 20:S276CrossRefGoogle Scholar
  26. Lopes MD, Bellon J, Shirley N, Ganter P (2002) Evidence for multiple interspecific hybridisation in Saccharomyces sensu stricto species. FEMS Res 1:323–331CrossRefGoogle Scholar
  27. Matzke M, Scheiid O, Matzke A (1999) Rapid structural and epigenetic changes in polyploid and aneuploid genomes. Bioessays 21:761–767CrossRefPubMedGoogle Scholar
  28. Naumov GI, Naumova ES, Lantto RA, Louis EJ, Korhola M (1992) Genetic homology between Saccharomyces cerevisiae and its sibling species S. paradoxus and S. bayanus. Yeast 8:599–612PubMedGoogle Scholar
  29. Nilsson-Tillgren T, Gjermansen C, Kielland-Brandt M, Petersen JL, Holmberg S (1981) Genetic differences between Saccharomyces carlsbergensis and S. cerevisiae. Analysis of chromosome III by single chromosome transfer. Carlsberg Res Commun 46:65–76Google Scholar
  30. Olesen K, Fleding T, Gjermansen C, Hansen J (2002) The dynamics of the Saccharomyces carlsbergensis brewing yeast transcriptome during a production-scale lager beer fermentation. FEMS Yeast Res 2:563–573CrossRefPubMedGoogle Scholar
  31. Paquin C, Adams J (1983) Frequency of fixation of adaptive mutations is higher in evolving diploid and haploid yeast populations. Nature 302:495–500PubMedGoogle Scholar
  32. Pedersen M (1986a) DNA sequence polymorphisms in the genus Saccharomyces. III. Restriction endonuclease fragment patterns of chromosomal regions in brewing and other yeast strains. Carlsberg Res Commun 51:163–168Google Scholar
  33. Pedersen M (1986b) DNA sequence polymorphisms in the genus Saccharomyces. IV. Homeologous chromosomes III of Saccharomyces bayanus, S. carlsbergensis and S. uvarum. Carlsberg Res Commun 51:185–202Google Scholar
  34. Pérez-Ortín JE, Querol A, Puig S, Barrio E (2002) Molecular characterization of a chromosomal rearrangement involved in the adaptive evolution of yeast strains. Genome Res 12:1533–1539CrossRefPubMedGoogle Scholar
  35. Puig S, Querol A, Barrio E, Pérez-Ortín JE (2000) Mitotic recombination and genetic changes in Saccharomyces cerevisiae during wine fermentation. Appl Environ Microbiol 66:2057–2061Google Scholar
  36. Takata Y, Watari J, Nishikawa N, Kamada K (1989) Electrophoretic banding patterns of chromosomal DNA from yeasts. Am Soc Brew Chem J 47:109–113Google Scholar
  37. Tamai Y, Momma T, Yoshimoto H, Kaneko Y (1998) Co-existence of two types of chromosomes in the bottom fermenting yeast, Saccharomyces pastorianus. Yeast 14:923–933CrossRefPubMedGoogle Scholar
  38. Vaughan-Martini A, Martini A (1987) Three newly delimited species of Saccharomyces sensu stricto. Antonie van Leewenhoek 53:77–84Google Scholar
  39. Wilhelm J, Pingoud A, Hahn M (2003) Real-time PCR-based method for the estimation of genome sizes. Nucleic Acids Res 31:1093–1098CrossRefGoogle Scholar
  40. Wolfe K (2003) Speciation reversal. Nature 422:25–26CrossRefPubMedGoogle Scholar
  41. Wolfe K, Shields D (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387:708–713PubMedGoogle Scholar
  42. Yamagishi H, Ogata T (1999) Chromosomal structures of bottom-fermenting yeasts. Syst Appl Microbiol 22:341–353PubMedGoogle Scholar
  43. Yoshimoto H, Fujiwara D, Momma T, Tanaka K, Sone H, Nagasawa N, Tamai Y (1999) Isolation and characterisation of the AFT2 gene encoding alcohol acetyltransferase II in the bottom fermenting yeast Saccharomyces pastorianus. Yeast 15:409–417PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Ursula Bond
    • 1
  • Cassandra Neal
    • 2
  • Dan Donnelly
    • 3
  • Tharappel C. James
    • 1
  1. 1.Department of Microbiology, Moyne Institute for Preventive Medicine, Trinity CollegeUniversity of DublinDublinIreland
  2. 2.DNA Array LeadFred Hutchinson Cancer Research CenterSeattleUSA
  3. 3.Guinness IrelandDublinIreland

Personalised recommendations