Current Genetics

, Volume 45, Issue 6, pp 383–389 | Cite as

Establishment of mRFP1 as a fluorescent marker in Aspergillus nidulans and construction of expression vectors for high-throughput protein tagging using recombination in vitro (GATEWAY)

  • Matthias W. Toews
  • Johannes Warmbold
  • Sven Konzack
  • Patricia Rischitor
  • Daniel Veith
  • Kay Vienken
  • Claudia Vinuesa
  • Huijun Wei
  • Reinhard Fischer
Technical Note

Abstract

The advent of fluorescent proteins as vital dyes had a major impact in many research fields. Different green fluorescent protein (GFP) variants were established in prokaryotic and eukaryotic organisms within the past 10 years, and other fluorescent proteins were discovered and applied. We expressed the Discosoma red fluorescent protein, DsRed (T4), the improved monomeric red fluorescent protein (mRFP1) and the blue fluorescent protein (BFP) in the filamentous fungus Aspergillus nidulans. Whereas DsRed requires tetramer formation for fluorescence, mRFP1 functions as monomer. We used sGFP, DsRed (T4), mRFP1 and BFP for nuclear and/or mitochondrial labelling. To facilitate gene tagging, we established a number of cloning vectors for the efficient, simultaneous fusion of any protein with mRFP1, BFP and sGFP or the haemagglutinin epitope, 3×HA. A PCR-amplified gene of interest can be inserted into the expression vectors without cloning but using homologous recombination in vitro (GATEWAY). The vectors contain the argB gene as a selection marker for A. nidulans and the inducible alcA promoter for control of expression. The system allows labelling of a protein with several tags in one recombination reaction. Both the nutritional marker gene and the promoter are frequently used in other fungi, suggesting that this set of expression vectors will be very useful tools for gene analysis on a genome-wide scale.

Keywords

GFP DsRed mRFP1 BFP GATEWAY Nuclear staining 

Notes

Acknowledgements

We thank Dr. Glick (University of Chicago, USA) for sending us DsRed (T4), Dr. Prastio (University of San Diego, USA) for sending us the mRFP1 and Dr. Ram (Leiden University, The Netherlands) for BFP. We are grateful to Jochen Scheld for excellent technical assistance and to Anne Blumenstein and Evelyn Vollmeister. This work was supported by the Max-Planck-Institute for terrestrial microbiology, the Fonds der Chemischen Industrie and the Deutsche Forschungsgemeinschaft (DFG).

References

  1. Baird GS, Zacharias DA, Tsien RY (2000) Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci USA 97:11984–11989CrossRefPubMedGoogle Scholar
  2. Bernard P, Couturier M (1992) Cell killing by the F plasmid CcdB protein involves poisoning of DNA-topoisomerase II complexes. J Mol Biol 226:735–745PubMedGoogle Scholar
  3. Bevis BJ, Glick BS (2002) Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nat Biotechnol 20:83–87CrossRefPubMedGoogle Scholar
  4. Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird BS, Zacharias DA, Tsien RY (2002) A monomeric red fluorescent protein. Proc Natl Acad Sci USA 99:7877–7882CrossRefPubMedGoogle Scholar
  5. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805PubMedGoogle Scholar
  6. Cormack B (1998) Green fluorescent protein as a reporter of transcription and protein localization in fungi. Curr Opin Microbiol 1:406–410PubMedGoogle Scholar
  7. Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133:462–469CrossRefPubMedGoogle Scholar
  8. Dou X, Wu D, An W, Davies J, Hashmi SB, Ukil L, Osmani SA (2003) The PHOA and PHOB cyclin-dependent kinases perform an essential function in Aspergillus nidulans. Genetics 165:1105–1115PubMedGoogle Scholar
  9. Fernandez-Abalos JM, Fox H, Pitt C, Wells B, Doonan JH (1998) Plant-adapted green fluorescent protein is a versatile vital reporter for gene expression, protein localization and mitosis in the filamentous fungus Aspergillus nidulans. Mol Microbiol 27:121–130PubMedGoogle Scholar
  10. Fernandez-Martinez J, Brown CV, Diez E, Tilburn J, Arst HN, Penalva MA, Espeso EA (2003) Overlap of nuclear localisation signal and specific DNA-binding residues within the zinc finger domain of PacC. J Mol Biol 334:667–684CrossRefPubMedGoogle Scholar
  11. Fuchs F, Prokisch H, Neupert W, Westermann B (2002) Interaction of mitochondria with microtubules in the filamentous fungus Neurospora crassa. J Cell Sci 115:1931–1937PubMedGoogle Scholar
  12. Käfer E (1977) Meiotic and mitotic recombination in Aspergillus and its chromosomal aberrations. Adv Genet 19:33–131PubMedGoogle Scholar
  13. Karimi M, Inzé D, Depicker A (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195CrossRefPubMedGoogle Scholar
  14. Karos M, Fischer R (1999) Molecular characterization of HymA, an evolutionarily highly conserved and highly expressed protein of Aspergillus nidulans. Mol Genet Genomics 260:510–521CrossRefGoogle Scholar
  15. Landy A (1989) Dynamic, structural and regulatory aspects of lambda site-specific recombination. Annu Rev Biochem 58:913–949Google Scholar
  16. Lippincott-Schwartz J, Patterson GH (2003) Development and use of fluorescent protein markers in living cells. Science 300:87–91CrossRefPubMedGoogle Scholar
  17. Lugones LG, Scholtmeijer K, Klootwijk R, Wessels JG (1999) Introns are necessary for mRNA accumulation in Schizophyllum commune. Mol Microbiol 32:681–689PubMedGoogle Scholar
  18. Mikkelsen L, Sarrocco S, Lubeck M, Jensen DF (2003) Expression of the red fluorescent protein DsRed-Express in filamentous ascomycete fungi. FEMS Microbiol Lett 223:135–139CrossRefPubMedGoogle Scholar
  19. Niedenthal RK, Riles L, Johnston M, Hegemann JH (1996) Green fluorescent protein as a marker for gene expression and subcellular localization in budding yeast. Yeast 12:773–786CrossRefPubMedGoogle Scholar
  20. Pöggeler S, Masloff S, Hoff B, Mayrhofer S, Kück U (2003) Versatile EGFP reporter plasmids for cellular localization of recombinant gene products in filamentous fungi. Curr Genet 43:54–61PubMedGoogle Scholar
  21. Sambrook J, Russel DW (1999) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.Google Scholar
  22. Schier N, Fischer R (2002) The Aspergillus nidulans cyclin PclA accumulates in the nucleus and interacts with the central cell cycle regulator NimX(Cdc2). FEBS Lett 523:143–146CrossRefPubMedGoogle Scholar
  23. Schier N, Liese R, Fischer R (2001) A pcl-like cyclin of Aspergillus nidulans is transcriptionally activated by developmental regulators and is involved in sporulation. Mol Cell Biol 21:4075–4088CrossRefPubMedGoogle Scholar
  24. Spellig T, Bottin A, Kahmann R (1996) Green fluorescent protein (GFP) as a new vital marker in the phytopathogenic fungus Ustilago maydis. Mol Genet Genomics 252:503–509CrossRefGoogle Scholar
  25. Stringer MA, Dean RA, Sewall TC, Timberlake WE (1991) Rodletless, a new Aspergillus developmental mutant induced by directed gene inactivation. Genes Dev 5:1161–1171PubMedGoogle Scholar
  26. Suelmann R, Fischer R (2000) Mitochondrial movement and morphology depend on an intact actin cytoskeleton in Aspergillus nidulans. Cell Motil Cytoskeleton 45:42–50CrossRefPubMedGoogle Scholar
  27. Suelmann R, Sievers N, Fischer R (1997) Nuclear traffic in fungal hyphae: in vivo study of nuclear migration and positioning in Aspergillus nidulans. Mol Microbiol 25:757–769PubMedGoogle Scholar
  28. Yelton MM, Hamer JE, Timberlake WE (1984) Transformation of Aspergillus nidulans by using a trpC plasmid. Proc Natl Acad Sci USA 81:1470–1474Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Matthias W. Toews
    • 1
  • Johannes Warmbold
    • 1
  • Sven Konzack
    • 1
  • Patricia Rischitor
    • 1
  • Daniel Veith
    • 1
  • Kay Vienken
    • 1
  • Claudia Vinuesa
    • 2
  • Huijun Wei
    • 3
  • Reinhard Fischer
    • 1
  1. 1.Department of MicrobiologyUniversity of Marburg and Max-Planck-Institute for terrestrial MicrobiologyMarburgGermany
  2. 2.NadicomMarburgGermany
  3. 3.Department of Molecular Medicine, College of Veterinary MedicineCornell UniversityIthacaUSA

Personalised recommendations