Current Genetics

, Volume 45, Issue 4, pp 235–241 | Cite as

Disruption of the Aspergillus fumigatus argB gene using a novel in vitro transposon-based mutagenesis approach

Technical Note

Abstract

We disrupted the Aspergillus fumigatus argB gene, encoding ornithine transcarbamylase, using a novel in vitro transposon-based mutagenesis approach. This approach utilizes a modified transposon containing the Neurospora crassa pyr4 gene, which is randomly inserted in vitro into a target sequence of interest. Clones in which the gene of interest has been disrupted are identified by PCR and used to transform a pyrG-deficient strain of A. fumigatus. Using this approach, we obtained arginine auxotrophs of A. fumigatus. Full characterization of the argB insertion was performed by Southern blot analysis. These strains can be supplemented by addition of arginine into the culture medium and can be fully rescued to arginine prototrophy by transformation with the intact A. fumigatus argB gene.

Keywords

Aspergillus fumigatus Arginine auxotroph Transformation Transposon 

References

  1. Bainbridge BW (1971) Macromolecular composition and nuclear division during spore germination in Aspergillus nidulans. J Gen Microbiol 66:319–325PubMedGoogle Scholar
  2. Biery MC, Stewart FJ, Stellwagen AE, Raleigh EA, Craig NL (2000) A simple in vitro Tn7-based transposition system with low target site selectivity for genome and gene analysis. Nucleic Acids Res 28:1067–1077CrossRefPubMedGoogle Scholar
  3. Boeke JD, LaCroute F, Fink GR (1984) A positive selection for mutants lacking orotidine-5’-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 197:345–346PubMedGoogle Scholar
  4. Brakhage AA, Langfelder K (2002) Menacing mold: the molecular biology of Aspergillus fumigatus. Annu Rev Microbiol 56:433–455CrossRefPubMedGoogle Scholar
  5. De Lucas JR, Dominguez AI, Higuero Y, Martinez O, Romero B, Mendoza A, Garcia-Bustos JF, Laborda F (2001) Development of a homologous transformation system for the opportunistic human pathogen Aspergillus fumigatus based on the sC gene encoding ATP sulfurylase. Arch Microbiol 176:106–113CrossRefPubMedGoogle Scholar
  6. d’Enfert C (1996) Selection of multiple disruption events in Aspergillus fumigatus using the orotidine-5′-decarboxylase gene, pyrG, as a unique transformation marker. Curr Genet 30:76–82PubMedGoogle Scholar
  7. d’Enfert C, Weidner G, Brakhage AA (1999) Transformation systems of Aspergillus fumigatus: new tools to investigate fungal virulence. In: Brakhage AA, Jahn B, Schmidt A (eds) Aspergillus fumigatus: biology, clinics and molecular approaches to pathogenicity, vol 2. Karger, Basel, pp 149–166Google Scholar
  8. Denning DW (1998) Invasive aspergillosis. Clin Infect Dis 26:781–803PubMedGoogle Scholar
  9. Hamer L, Adachi K, Montenegro-Chamorro MV, Tanzer MM, Mahanty SK, Lo C, Tarpey RW, Skalchunes AR, Heiniger RW, Frank SA, Darveaux BA, Lampe DJ, Slater TM, Ramamurthy L, DeZwaan TM, Nelson GH, Shuster JR, Woessner J, Hamer JE (2001) Gene discovery and gene function assignment in filamentous fungi. Proc Natl Acad Sci USA 98:5110–5115CrossRefPubMedGoogle Scholar
  10. Latge JP (1999) Aspergillus fumigatus and aspergillosis. Clin Microbiol Rev 12:310–350PubMedGoogle Scholar
  11. Lenouvel F, Vondervoort PJ van de, Visser J (2002) Disruption of the Aspergillus niger argB gene: a tool for transformation. Curr Genet 41:425–432CrossRefPubMedGoogle Scholar
  12. Mellado E, Aufauvre-Brown A, Gow NA, Holden DW (1996) The Aspergillus fumigatus chsC and chsG genes encode class III chitin synthases with different functions. Mol Microbiol 20:667–679PubMedGoogle Scholar
  13. Metcalfe WW, Jiang W, Wanner BL (1994) Use of the rep technique for allele replacement to construct new Escherichia coli hosts for maintenance of R6 K gamma origin plasmids at different copy numbers. Gene 138:1–7PubMedGoogle Scholar
  14. Monod M, Paris S, Sarfati J, Jaton-Ogay K, Ave P, Latge JP (1993) Virulence of alkaline protease-deficient mutants of Aspergillus fumigatus. FEMS Microbiol Lett 106:39–46Google Scholar
  15. Osherov N, Mathew J, May GS (2000) Polarity-defective mutants of Aspergillus nidulans. Fungal Genet Biol 31:181–188CrossRefPubMedGoogle Scholar
  16. Osherov N, Kontoyiannis DP, Romans A, May GS (2001) Resistance to itraconazole in Aspergillus nidulans and Aspergillus fumigatus is conferred by extra copies of the A. nidulans P-450 14alpha-demethylase gene, pdmA. J Antimicrob Chemother 48:75–81CrossRefPubMedGoogle Scholar
  17. Punt PJ, Hondel CA van den (1992) Transformation of filamentous fungi based on hygromycin B and phleomycin resistance markers. Methods Enzymol 216:447–457PubMedGoogle Scholar
  18. Punt PJ, Oliver RP, Dingemanse MA, Pouwels PH, Hondel CA van den (1987) Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. Gene 56:117–124PubMedGoogle Scholar
  19. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. CHSL Press, Cold Spring Harbor, N.Y.Google Scholar
  20. Smith JM, Tang CM, Van Noorden S, Holden DW (1994) Virulence of Aspergillus fumigatus double mutants lacking restriction and an alkaline protease in a low-dose model of invasive pulmonary aspergillosis. Infect Immun 62:5247–5254PubMedGoogle Scholar
  21. Tang CM, Cohen J, Krausz T, Van Noorden S, Holden DW (1993) The alkaline protease of Aspergillus fumigatus is not a virulence determinant in two murine models of invasive pulmonary aspergillosis. Infect Immun 61:1650–1656PubMedGoogle Scholar
  22. Waring RB, May GS, Morris NR (1989) Characterization of an inducible expression system in Aspergillus nidulans using alcA and tubulin-coding genes. Gene 79:119–130PubMedGoogle Scholar
  23. Weidner G, d’Enfert C, Koch A, Mol PC, Brakhage AA (1998) Development of a homologous transformation system for the human pathogenic fungus Aspergillus fumigatus based on the pyrG gene encoding orotidine 5′-monophosphate decarboxylase. Curr Genet 33:378–385PubMedGoogle Scholar
  24. Weidner G, Steidl S, Brakhage AA (2001) The Aspergillus nidulans homoaconitase gene lysF is negatively regulated by the multimeric CCAAT-binding complex AnCF and positively regulated by GATA sites. Arch Microbiol 175:122–132PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Department of Human Microbiology, Sackler School of MedicineTel Aviv UniversityTel AvivIsrael

Personalised recommendations