Current Genetics

, Volume 45, Issue 2, pp 61–75 | Cite as

A genome’s-eye view of the light-harvesting polypeptides of Chlamydomonas reinhardtii

  • D. Elrad
  • A. R. Grossman
Review Article


Chlamydomonas reinhardtii is a valuable model system for defining the structure and function of polypeptides of the photosynthetic apparatus and the dynamic aspects of photosynthesis. Recently, a genome-wide analysis of cDNAs and a draft genome sequence that covers approximately 90% of the genome were made available, providing a clear picture of the composition of specific gene families, the relationships among the gene family members, and the location of each member on the genome. We used the available sequence information to analyze the extensive family of light-harvesting genes in C. reinhardtii. There are nine genes encoding polypeptides of the major light-harvesting complex of photosystem II, two genes encoding the minor light-harvesting polypeptides of photosystem II, and nine genes encoding polypeptides predicted to comprise the photosystem I light-harvesting complex. Furthermore, there are five genes encoding early light-induced proteins and two genes encoding LI818 polypeptides. A candidate for the PsbS gene has also been found in the raw genome sequence data (Niyogi, personal communication), although no genes encoding homologues of the Sep, or Hli polypeptides have been identified. In this manuscript, we identify and classify the family of light-harvesting polypeptides encoded on the C. reinhardtii genome. This is an important first step in designing specific genetic, biochemical, and physiological studies aimed at characterizing the composition, function, and regulation of the light-harvesting complexes.


Polypeptide Vascular Plant Thermal Dissipation Norflurazon Mature Polypeptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank NSF for supporting the work presented in this manuscript and providing us with the resources to develop C. reinhardtii genomics (NSF grants MCB-9975765, MCB-0235878, INT-0084189 awarded to A.R.G.). We would also like to thank Jeffrey Shrager and Devaki Bhaya for help with some of the sequence analysis, Kris Niyogi for sharing unpublished data, and Dan Rokhsar and Diego Martinez of DOE who were instrumental in providing the community with the C. reinhardtii genome sequence. This is Carnegie Institution of Washington Publication No. 1633.


  1. Adamska I (1997) ELIPs: light-induced stress proteins. Physiol Plant 100:794–805CrossRefGoogle Scholar
  2. Adamska I, Roobol Boza M, Lindahl M, Andersson B (1999) Isolation of pigment-binding early light-inducible proteins from pea. Eur J Biochem 260:453–460CrossRefPubMedGoogle Scholar
  3. Adamska I, Kruse E, Kloppstech K (2001) Stable insertion of the early light-induced proteins into etioplast membranes requires chlorophyll a. J Biol Chem 276:8582–8587CrossRefPubMedGoogle Scholar
  4. Allen JF, Forsberg J (2001) Molecular recognition in thylakoid structure and function. Trends Plant Sci 6:317–326PubMedGoogle Scholar
  5. Allen KD, Staehelin LA (1994) Polypeptide composition, assembly and phosphorylation patterns of the photosystem-II antenna system of Chlamydomonas reinhardtii. Planta 194:42–54Google Scholar
  6. Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedGoogle Scholar
  7. Andersson J, Walters RG, Horton P, Jansson S (2001) Antisense inhibition of the photosynthetic antenna proteins CP29 and CP26: implications for the mechanism of protective energy dissipation. Plant Cell 13:1193–1204Google Scholar
  8. Andrews JR, Fryer MJ, Baker NR (1995) Consequences of LHCII deficiency for photosynthetic regulation in chlorina mutants of barley. Photosynth Res 44:81–91Google Scholar
  9. Asamizu E, Nakamura Y, Sato S, Fukuzawa H, Tabata S (1999) A large scale structural analysis of cDNAs in a unicellular green alga, Chlamydomonas reinhardtii. I. Generation of 3433 non-redundant expressed sequence tags. DNA Res 6:369–373PubMedGoogle Scholar
  10. Asamizu E, Miura K, Kucho K, Inoue Y, Fukuzawa H, Ohyama K, Nakamura Y, Tabata S (2000) Generation of expressed sequence tags from low-CO2 and high-CO2 adapted cells of Chlamydomonas reinhardtii. DNA Res 7:305–307PubMedGoogle Scholar
  11. Asleson CM, Lefebvre PA (1998) Genetic analysis of flagellar length control in Chlamydomonas reinhardtii: a new long-flagella locus and extragenic suppressor mutations. Genetics 148:693–702PubMedGoogle Scholar
  12. Auchincloss AH, Loroch AL, Rochaix J-D (1999) The argininosuccinate lyase gene of Chlamydomonas reinhardtii: cloning of the cDNA and its characterization as a selectable shuttle marker. Mol Gen Genet 261:21–30CrossRefPubMedGoogle Scholar
  13. Banet G, Pick U, Zamir A (2000) Light-harvesting complex II pigments and proteins in association with Cbr: a homolog of higher-plant early light-inducible proteins in the unicellular green alga Dunaliella. Planta 210:947–955CrossRefPubMedGoogle Scholar
  14. Bassi R, Caffarri S (2000) Lhc proteins and the regulation of photosynthetic light harvesting function by xanthophylls. Photosynth Res 64:243–256CrossRefGoogle Scholar
  15. Bassi R, Wollman FA (1991) The chlorophyll-a/b proteins of photosystem-II in Chlamydomonas reinhardtii: isolation, characterization, and immunological cross-reactivity to higher-plant polypeptides. Planta 183:423–433Google Scholar
  16. Bassi R, Soen S, Frank G, Zuber H, Rochaix J-D (1992) Characterization of chlorophyll-a/b proteins of photosystem-I from Chlamydomonas reinhardtii. J Biol Chem 267:25714–25721PubMedGoogle Scholar
  17. Bassi R, Pineau B, Dainese P, Marquardt J (1993) Carotenoid-binding proteins of photosystem II. Eur J Biochem 212:297–303PubMedGoogle Scholar
  18. Bennoun P, Delepelaire P (1982) Isolation of photosynthesis mutants in Chlamydomonas. In: Edelman M, Chua N-H, Hallick RB (eds) Methods in chloroplast molecular biology. Elsevier Biomedical Press, Amsterdam, pp 25–38Google Scholar
  19. Bennoun P, Levine RP (1967) Detecting mutants that have impaired photosynthesis by their increased level of fluorescence. Plant Physiol 42:1284–1287Google Scholar
  20. Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294:1351–1362CrossRefPubMedGoogle Scholar
  21. Bossmann B, Knoetzel J, Jansson S (1997) Screening of chlorina mutants of barley (Hordeum vulgare L.) with antibodies against light-harvesting proteins of PS I and PS II: absence of specific antenna proteins. Photosynth Res 52:127–136CrossRefGoogle Scholar
  22. Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM, Shark KB, Sanford JC (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240:1534–1538PubMedGoogle Scholar
  23. Braun P, Banet G, Tal T, Malkin S, Zamir A (1996) Possible role of Cbr, an algal early-light-induced protein, in nonphotochemical quenching of chlorophyll fluorescence. Plant Physiol 110:1405–1411PubMedGoogle Scholar
  24. Brown LE, Sprecher SL, Keller LR (1991) Introduction of exogenous DNA into Chlamydomonas reinhardtii by electroporation. Mol Gen Genet 11:2328–2332Google Scholar
  25. Castelletti S, Morosinotto T, Robert B, Caffarri S, Bassi R, Croce R (2003) Recombinant Lhca2 and Lhca3 subunits of the photosystem I antenna system. Biochemistry 42:4226–4234CrossRefPubMedGoogle Scholar
  26. Chua NH, Bennoun P (1975) Thylakoid membrane polypeptides of Chlamydomonas reinhardtii: wild-type and mutant strains deficient in Photosystem 2 reaction center. Proc Natl Acad Sci USA 72:2175–2179PubMedGoogle Scholar
  27. Croce R, Morosinotto T, Castelletti S, Breton J, Bassi R (2002) The Lhca antenna complexes of higher plants photosystem. Biochim Biophys Acta 1556:29–40CrossRefPubMedGoogle Scholar
  28. Davies JP, Weeks DP, Grossman AR (1992) Expression of the arylsulfatase gene from the beta 2-tubulin promoter in Chlamydomonas reinhardtii. Nucleic Acids Res 20:2959–2965PubMedGoogle Scholar
  29. Davies JP, Yildiz FH, Grossman AR (1994) Mutants of Chlamydomonas with aberrant responses to sulfur deprivation. Plant Cell 6:53–63Google Scholar
  30. Davies JP, Yildiz FH, Grossman AR (1996) Sac1, a putative regulator that is critical for survival of Chlamydomonas reinhardtii during sulfur deprivation. EMBO J 15:2150–2159PubMedGoogle Scholar
  31. Davies JP, Yildiz FH, Grossman AR (1999) Sac3, a Snf1-like serine threonine kinase that positively and negatively regulates the responses of Chlamydomonas to sulfur limitation. Plant Cell 11:1179–1190CrossRefPubMedGoogle Scholar
  32. Debuchy R, Purton S, Rochaix J-D (1989) The argininosuccinate lyase gene of Chlamydomonas reinhardtii—an important tool for nuclear transformation and for correlating the genetic and molecular maps of the arg7 locus. EMBO J 8:2803–2809PubMedGoogle Scholar
  33. Delepelaire P, Chua NH (1979) Lithium dodecyl sulfate–polyacrylamide gel electrophoresis of thylakoid membranes at 4 °C—characterizations of   additional chlorophyll–protein complexes. Proc Natl Acad Sci USA 76:111–115Google Scholar
  34. Depège N, Bellafiore S, Rochaix J-D (2003) Role of chloroplast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas. Science 299:1572–1575CrossRefPubMedGoogle Scholar
  35. Diener DR, Curry AM, Johnson KA, Williams BD, Lefebvre PA, Kindle KL, Rosenbaum JL (1990) Rescue of a paralyzed-flagella mutant of Chlamydomonas by transformation. Proc Natl Acad Sci USA 87:5739–5743PubMedGoogle Scholar
  36. Dolganov NAM, Bhaya D, Grossman AR (1995) Cyanobacterial protein with similarity to the chlorophyll a/b-binding proteins of higher plants: evolution and regulation. Proc Natl Acad Sci USA 92:636–640PubMedGoogle Scholar
  37. Durnford DG, Price GD, McKim SM, Sarchfield ML (2003) Light-harvesting complex gene expression is controlled by both transcriptional and post-transcriptional mechanisms during photoacclimation in Chlamydomonas reinhardtii. Physiol Plant 118:193–205CrossRefGoogle Scholar
  38. Elrad D, Niyogi KK, Grossman AR (2002) A major light-harvesting polypeptide of photosystem II functions in thermal dissipation. Plant Cell 14:1801–1816CrossRefPubMedGoogle Scholar
  39. Escoubas JM, Lomas M, Laroche J, Falkowski PG (1995) Light-intensity regulation of cab gene-transcription is signaled by the redox state of the plastoquinone pool. Proc Natl Acad Sci USA 92:10237–10241PubMedGoogle Scholar
  40. Fernandez E, Schnell R, Ranum LPW, Hussey SC, Silflow CD, Lefebvre PA (1989) Isolation and characterization of the nitrate reductase structural gene of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 86:6449–6453PubMedGoogle Scholar
  41. Finazzi G, Furia A, Barbagallo RP, Forti G (1999) State transitions, cyclic and linear electron transport and photophosphorylation in Chlamydomonas reinhardtii. Biochim Biophys Acta 1413:117–129CrossRefPubMedGoogle Scholar
  42. Finazzi G, Barbagallo RP, Bergo E, Barbato R, Forti G (2001a) Photoinhibition of Chlamydomonas reinhardtii in state 1 and state 2: damages to the photosynthetic apparatus under linear and cyclic electron flow. J Biol Chem 276:22251–22257CrossRefPubMedGoogle Scholar
  43. Finazzi G, Zito F, Barbagallo RP, Wollman FA (2001b) Contrasted effects of inhibitors of cytochrome b(6)f complex on state transitions in Chlamydomonas reinhardtii: the role of Qo site occupancy in LHCII kinase activation. J Biol Chem 276:9770–9774CrossRefPubMedGoogle Scholar
  44. Finazzi G, Rappaport F, Furia A, Fleischmann M, Rochaix JD, Zito F, Forti G (2002) Involvement of state transitions in the switch between linear and cyclic electron flow in Chlamydomonas reinhardtii. EMBO Rep 3:280–285CrossRefPubMedGoogle Scholar
  45. Fischer K, Kammerer B, Gutensohn M, Arbinger B, Weber A, Hausler RE, Flugge UI (1997) A new class of plastid phosphate translocators: a putative link between primary and secondary metabolism by the phophoenolpyrubate/phosphate antiporter. Plant Cell Environ 9:453–462CrossRefGoogle Scholar
  46. Fitch WM, Margoliash E (1967) Construction of phylogenetic trees. Science 155:279–282PubMedGoogle Scholar
  47. Fleischmann MM, Ravanel S, Delosme R, Olive J, Zito F, Wollman FA, Rochaix J-D (1999) Isolation and characterization of photoautotrophic mutants of Chlamydomonas reinhardtii deficient in state transition. J Biol Chem 274:30987–30994PubMedGoogle Scholar
  48. Franklin J, Zhang J, Redding K (2003) Use of aminoglycoside adenyltransferase translational fusions to determine topology of thylakoid membrane proteins. FEBS Lett 536:97–100CrossRefPubMedGoogle Scholar
  49. Fuhrmann M, Oertel W, Hegemann P (1999) A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii. Plant J 19:353–361CrossRefPubMedGoogle Scholar
  50. Fuhrmann M, Ferbitz L, Eichler-Stahlberg A, Hausherr A, Hegemann P (2002) Promoter activity monitored by heterologous expression of Renilla reniformis luciferase in Chlamydomonas reinhardtii. Int Chlamydomonas Conf Abstr 10
  51. Funke RP, Kovar JL, Weeks DP (1997) Intracellular carbonic anhydrase is essential to photosynthesis in Chlamydomonas reinhardtii at atmospheric levels of CO2. Demonstration via genomic complementation of the high-CO2-requiring mutant ca-1. Plant Physiol 114:237–244CrossRefPubMedGoogle Scholar
  52. Germano M, Yakushevska AE, Keegstra W, Gorkom HJ van, Dekker JP, Boekema EJ (2002) Supramolecular organization of photosystem I and light-harvesting complex I in Chlamydomonas reinhardtii. FEBS Lett 525:121–125CrossRefPubMedGoogle Scholar
  53. Gilmore AM, Hazlett TL, Debrunner PG, Govindjee (1996) Photosystem II chlorophyll a fluorescence lifetimes and intensity are independent of the antenna size differences between barley wild-type and chlorina mutants: photochemical quenching and xanthophyll cycle-dependent nonphotochemical quenching of fluorescence. Photosynth Res 48:171–187Google Scholar
  54. Gilmore AM, Itoh S, Govindjee (2000) Global spectral-kinetic analysis of room temperature chlorophyll a fluorescence from light-harvesting antenna mutants of barley. Philos Trans R Soc Lond Ser B Biol Sci 355:1371–1384CrossRefGoogle Scholar
  55. Givan AL, Levine RP (1967) Photosynthetic electron transport chain of Chlamydomonas reinhardtii. 7. Photosynthetic phosphorylation by a mutant strain of Chlamydomonas reinhardtii deficient in active P700. Plant Physiol 42:1264–1268PubMedGoogle Scholar
  56. Goldschmidt-Clermont M (1991) Transgenic expression of aminoglycoside adenine transferase in the chloroplast: a selectable marker for site-directed transformation of Chlamydomonas. Nucleic Acids Res 19:4083–4089PubMedGoogle Scholar
  57. Gorman DS, Levine RP (1966) Photosynthetic electron transport chain of Chlamydomonas reinhardtii. VI. Electron transport in mutant strains lacking either cytochrome 553 or plastocyanin. Plant Physiol 41:1648–1656Google Scholar
  58. Green BR, Durnford DG (1996) The chlorophyll–carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 47:685–714Google Scholar
  59. Grossman AR (2000) Chlamydomonas reinhardtii and photosynthesis: genetics to genomics. Curr Opin Plant Biol 3:132–137CrossRefPubMedGoogle Scholar
  60. Hahn D, Kück U (1999) Identification of DNA sequences controlling light- and chloroplast-dependent expression of the Lhcb1 gene from Chlamydomonas reinhardtii. Curr Genet 34:459–466CrossRefPubMedGoogle Scholar
  61. Haldrup A, Jensen PE, Lunde C, Scheller HV (2001) Balance of power: a view of the mechanism of photosynthetic state transitions. Trends Plant Sci 6:301–305CrossRefPubMedGoogle Scholar
  62. Hallahan BJ, Purton S, Ivison A, Wright D, Evans MCW (1995) Analysis of the proposed Fe-Sx binding region in Chlamydomonas reinhardtii. Photosynth Res 46:257–264Google Scholar
  63. Harris E (1989) The Chlamydomonas sourcebook. Academic Press, San DiegoGoogle Scholar
  64. Harris EH (2001) Chlamydomonas as a model organism. Annu Rev Plant Physiol Plant Mol Biol 52:363–406PubMedGoogle Scholar
  65. Härtel H, Lokstein H, Grimm B, Bi BR (1996) Kinetic studies on the xanthophyll cycle in barley leaves: influence of antenna size and relations to nonphotochemical chlorophyll fluorescence quenching. Plant Physiol 110:471–482PubMedGoogle Scholar
  66. Havaux M, Guedeney G, He Q, Grossman AR (2003) Elimination of high-light-inducible polypeptides related to eukaryotic chlorophyll a/b-binding proteins results in aberrant photoacclimation in Synechocystis PCC6803. Biochim Biophys Acta 1557:21–33CrossRefPubMedGoogle Scholar
  67. He QF, Dolganov N, Björkman O, Grossman AR (2001) The high light-inducible polypeptides in Synechocystis PCC6803: expression and function in high light. J Biol Chem 276:306–314CrossRefPubMedGoogle Scholar
  68. Heddad M, Adamska I (2000) Light stress-regulated two-helix proteins in Arabidopsis thaliana related to the chlorophyll a/b-binding gene family. Proc Natl Acad Sci USA 97:3741–3746CrossRefPubMedGoogle Scholar
  69. Higgs DC, Shapiro RS, Kindle KL, Stern DB (1999) Small cis-acting sequences that specify secondary structures in a chloroplast mRNA are essential for RNA stability and translation. Mol Cell Biol 19:8479–8491PubMedGoogle Scholar
  70. Hippler M, Klein J, Fink A, Allinger T, Hoerth P (2001) Towards functional proteomics of membrane protein complexes: analysis of thylakoid membranes from Chlamydomonas reinhardtii. Plant J 28:595–606CrossRefPubMedGoogle Scholar
  71. Hobe S, Foster R, Klingler J, Paulsen H (1995) N-proximal sequence motif in light-harvesting chlorophyll a/b-binding protein is essential for the trimerization of light-harvesting chlorophyll a/b complex. Biochem 34:10224–10228Google Scholar
  72. Hong S, Spreitzer RJ (1994) Nuclear mutation inhibits expression of the chloroplast gene that encodes the large subunit of ribulose-1,5-bisphosphate carboxylase-oxygenase. Plant Physiol 106:673–678PubMedGoogle Scholar
  73. Hutin C, Nussaume L, Moise N, Moya I, Kloppstech K, Havaux M (2003) Early light-induced proteins protect Arabidopsis from photooxidative stress. Proc Natl Acad Sci USA 15:49261–49266Google Scholar
  74. Hwang S, Herrin DL (1993) Characterization of cDNA encoding the 20-kDa photosystem I light-harvesting polypeptide of Chlamydomonas reinhardtii. Curr Genet 23:512–517PubMedGoogle Scholar
  75. Ihalainen J, Gobets B, Sznee K, Brazzoli M, Croce R, Bassi R, Grondelle R van, Korppi-Tommola J, Dekker J (2000) Evidence for two spectroscopically different dimers of light-harvesting complex I from green plants. Biochemistry 39:8625–8631CrossRefPubMedGoogle Scholar
  76. Im C, Zhang Z, Shrager J, Chang C, Grossman A (2003) Analysis of light and CO2 regulation in Chlamydomonas reinhardtii using genome-wide approaches. Photosynth Res 75:111–125CrossRefGoogle Scholar
  77. Imbault P, Wittemer C, Johanningmeier U, Jacobs JD, Howell SH (1988) Structure of the Chlamydomonas reinhardtii CabII-1 gene encoding a chlorophyll a/b-binding protein gene. Gene 73:397–407CrossRefPubMedGoogle Scholar
  78. Jacobshagen S, Kindle KL, Johnson CH (1996) Transcription of CABII is regulated by the biological clock in Chlamydomonas reinhardtii. Plant Mol Biol 31:1173–1184PubMedGoogle Scholar
  79. Jansson S (1999) A guide to the Lhc genes and their relatives in Arabidopsis. Trends Plant Sci 4:236–240CrossRefPubMedGoogle Scholar
  80. Jansson S, Selstam E, Gustafsson P (1990) The rapidly phosphorylated 25-kDa polypeptide of the light-harvesting complex of photosystem-II is encoded by the type-2 CabII genes. Biochim Biophys Acta 1019:110–114CrossRefPubMedGoogle Scholar
  81. Jansson S, Pichersky E, Bassi R, Green BR, Ikeuchi M, Melis A, Simpson DJ, Spangfort M, Staehelin LA, Thornber JP (1992) A nomenclature for the genes encoding the chlorophyll a/b binding proteins of higher plants. Plant Mol Biol Rep 10:242–253Google Scholar
  82. Jansson S, Andersson J, Jung Kim S, Jackowski G (2000) An Arabidopsis thaliana protein homologous to cyanobacterial high-light-inducible proteins. Plant Mol Biol 42:345–351CrossRefPubMedGoogle Scholar
  83. Jeong BR, Wu-Scharf D, Zhang CM, Cerutti H (2002) Suppressors of transcriptional transgenic silencing in Chlamydomonas are sensitive to DNA-damaging agents and reactivate transposable elements. Proc Natl Acad Sci USA 99:1076–1081CrossRefPubMedGoogle Scholar
  84. Kathir P, LaVoie M, Brazelton WJ, Haas NA, et al (2003) Molecular map of the Chlamydomonas reinhardtii nuclear genome. Eukaryot Cell 2:362–379CrossRefPubMedGoogle Scholar
  85. Kindle KI (1987) Expression of a gene for a light-harvesting chlorophyll a-binding chlorophyll b-binding protein in Chlamydomonas reinhardtii: effect of light and acetate. Plant Mol Biol 9:547–563Google Scholar
  86. Kindle KI (1990) High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 87:1228–1232PubMedGoogle Scholar
  87. Kindle KI, Schnell RA, Fernandez E, Lefebvre PA (1989) Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase. J Cell Biol 109:2589–2601PubMedGoogle Scholar
  88. Knoetzel J, Simpson D (1991) Expression and organization of antenna proteins in the light-sensitive and temperature-sensitive barley mutant chlorina-104. Planta 185:111–123Google Scholar
  89. Komine Y, Kikis E, Schuster G, Stern D (2002) Evidence for in vivo modulation of chloroplast RNA stability by 3′UTR homopolymeric tails in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 99:4085–4090CrossRefPubMedGoogle Scholar
  90. Koutoulis A, Pazour GJ, Wilkerson CG, Inaba K, Sheng H, Takada S, Witman GB (1997) The Chlamydomonas reinhardtii ODA3 gene encodes a protein of the outer dynein arm docking complex. J Cell Biol 137:1069–1080CrossRefPubMedGoogle Scholar
  91. Kovar JL, Zhang J, Funke RP, Weeks DP (2002) Molecular analysis of the acetolactate synthase gene of Chlamydomonas reinhardtii and development of a genetically engineered gene as a dominant selectable marker for genetic transformation. Plant J 29:109–117CrossRefPubMedGoogle Scholar
  92. Kruse O, Nixon PJ, Schmid GH, Mullineaux CW (1999) Isolation of state transition mutants of Chlamydomonas reinhardtii by fluorescence video imaging. Photosynth Res 61:43–51Google Scholar
  93. Kühlbrandt W, Wang DN, Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367:614–621PubMedGoogle Scholar
  94. Lardans A, Gillham NW, Boynton JE (1997) Site-directed mutations at residue 251 of the photosystem II D1 protein of Chlamydomonas that result in a nonphotosynthetic phenotype and impair D1 synthesis and accumulation. J Biol Chem 272:210–216CrossRefPubMedGoogle Scholar
  95. Larson EM, O’Brien CM, Zhu G, Spreitzer RJ, Portis AR Jr (1997) Specificity for activase is changed by a Pro-89 to Arg substitution in the large subunit of ribulose-1,5-biosphosphate carboxylase-oxygenase. J Biol Chem 272:17033–17037CrossRefPubMedGoogle Scholar
  96. Lavorel J, Levine RP (1968) Fluorescence properties of wild-type Chlamydomonas reinhardtii and three mutant strains having impaired photosynthesis. Plant Physiol 43:1049–1055Google Scholar
  97. Lefebvre PA, Silflow CD (1999) Chlamydomonas: the cell and its genomes. Genetics 151:9–14PubMedGoogle Scholar
  98. Lers A, Levy H, Zamir A (1991) Co-regulation of a gene homologous to early light-induced genes in higher plants and β-carotene in the alga Dunaliella bardawli. J Biol Chem 266:13698–13705PubMedGoogle Scholar
  99. Levine RP (1969) Analysis of photosynthesis using mutant strains of algae and higher plants. Annu Rev Plant Physiol 20:523–540CrossRefGoogle Scholar
  100. Levine RP, Goodenough UW (1970) Genetics of photosynthesis and of chloroplast in Chlamydomonas reinhardtii. Annu Rev Genet 4:397–408CrossRefPubMedGoogle Scholar
  101. Levy H, Tal T, Shaish A, Zamir A (1993) Cbr, an algal homolog of plant early light-induced proteins, is a putative zeaxanthin-binding protein. J Biol Chem 268:20892–20896PubMedGoogle Scholar
  102. Li XI, Björkman O, Shih C, Grossman AR, Rosenquist M, Jansson S, Niyogi KK (2000) A pigment-binding protein essential for regulation of photosynthetic light-harvesting. Nature 403:391–395PubMedGoogle Scholar
  103. Li XI, Phippard A, Jo P, Niyogi KK (2002) Structural function analysis of photosystem II subunit S (PsbS) in vivo. Funct Plant Biol 29:1131–1139CrossRefGoogle Scholar
  104. Lilly J, Maul J, Stern D (2002) The Chlamydomonas reinhardtii organellar genomes respond transcriptionally and post-transcriptionally to abiotic stimuli. Plant Cell 14:2681–2706Google Scholar
  105. Lumbreras V, Stevens DR, Purton S (1998) Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J 14:441–447Google Scholar
  106. Lunde C, Jensen PE, Haldrup A, Knoetzel J, Scheller HV (2000) The PSI-H subunit of photosystem I is essential for state transitions in plant photosynthesis. Nature 408:613–615PubMedGoogle Scholar
  107. Mayfield SP, Kindle KL (1990) Stable nuclear transformation of Chlamydomonas reinhardtii by using a Chlamydomonas reinhardtii gene as the selectable marker. Proc Natl Acad Sci USA 87:2087–2091PubMedGoogle Scholar
  108. Melkozernov AN, Su H, Lin S, Bingham S, Webber AN, Blankenship RE (1997) Specific mutations near the primary donor in photosystem I from Chlamydomonas reinhardtii alters the trapping time and spectroscopic properties of P700. Biochemistry 36:2898–2907CrossRefPubMedGoogle Scholar
  109. Melkozernov A, Schmid V, Schmidt G, Blankenship R (1998) Energy redistribution in heterodimeric light-harvesting complex LHCI-730 of photosystem I. J Phys Chem B 102:8183–8189CrossRefGoogle Scholar
  110. Meyer G, Kloppstech K (1984) A rapidly-induced chloroplast protein with a high turnover coded for by pea nuclear DNA. Eur J Biochem 138:201–207PubMedGoogle Scholar
  111. Michel H, Griffin PR, Shabanowitz J, Hunt DF, Bennett J (1991) Tandem mass-spectrometry identifies sites of three posttranslational modifications of spinach light-harvesting chlorophyll protein-II: proteolytic cleavage, acetylation, and phosphorylation. J Biol Chem 266:17584–17591PubMedGoogle Scholar
  112. Minagawa J, Han KC, Dohmae N, Takio K, Inoue Y (2001) Molecular characterization and gene expression of lhcb5 gene encoding CP26 in the light-harvesting complex II of Chlamydomonas reinhardtii. Plant Mol Biol 46:277–287CrossRefPubMedGoogle Scholar
  113. Minko I, Holloway SP, Nikaido S, Carter M, Odom OW, Johnson CH, Herrin DL (1999) Renilla luciferase as a vital reporter for chloroplast gene expression in Chlamydomonas. Mol Gen Genet 262:421–425CrossRefPubMedGoogle Scholar
  114. Moll B, Levine RP (1970) Characterization of a photosynthetic mutant strain of Chlamydomonas reinhardtii deficient in phosphoribulokinase activity. Plant Physiol 46:576–580Google Scholar
  115. Nelson JAE, Savereide PB, Lefebvre PA (1994) The Cry1 gene in Chlamydomonas reinhardtii—structure and use as a dominant selectable marker for nuclear transformation. Mol Cell Biol 14:4011–4019PubMedGoogle Scholar
  116. Newman SM, Boynton JE, Gillham NW, Randolph-Anderson BL, Johnson AM, Harris EH (1990) Transformation of chloroplast ribosomal RNA in Chlamydomonas: molecular and genetic characterization of integration events. Genetics 126:875–888PubMedGoogle Scholar
  117. Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50:333–359Google Scholar
  118. Niyogi KK, Björkman O, Grossman AR (1997a) Chlamydomonas xanthophyll cycle mutants identified by video imaging of chlorophyll fluorescence quenching. Plant Cell 9:1369–1380Google Scholar
  119. Niyogi KK, Björkman O, Grossman AR (1997b) The roles of specific xanthophylls in photoprotection. Proc Natl Acad Sci USA 94:14162–14167PubMedGoogle Scholar
  120. Niyogi KK, Grossman AR, Björkman O (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10:1121–1134PubMedGoogle Scholar
  121. Niyogi KK, Shih C, Chow WS, Pogson BJ, DellaPenna D, Björkman O (2001) Photoprotection in a zeaxanthin- and lutein-deficient double mutant of Arabidopsis. Photosynth Res 67:139–145CrossRefGoogle Scholar
  122. Ohresser M, Matagne RF, Loppes R (1997) Expression of the arylsulphatase reporter gene under the control of the nit1 promoter in Chlamydomonas reinhardtii. Curr Genet 31:264–271PubMedGoogle Scholar
  123. Palombella AL, Dutcher SK (1998) Identification of the gene encoding the tryptophan synthase beta-subunit from Chlamydomonas reinhardtii. Plant Physiol 117:455–464CrossRefPubMedGoogle Scholar
  124. Pogson BJ, Niyogi KK, Björkman O, DellaPenna D (1998) Altered xanthophyll compositions adversely affect chlorophyll accumulation and nonphotochemical quenching in Arabidopsis mutants. Proc Natl Acad Sci USA 95:13324–13329CrossRefPubMedGoogle Scholar
  125. Potter E, Kloppstech K (1993) Effects of light stress on the expression of early light-inducible proteins in barley. Eur J Biochem 214:779–786PubMedGoogle Scholar
  126. Purton S, Rochaix J-D (1994) Characterization of the ARG7 gene of Chlamydomonas reinhardtii and its application to nuclear transformation. Eur J Phycol 30:141–148Google Scholar
  127. Quinn JM, Merchant S (1995) Two copper-responsive elements associated with the Chlamydomonas Cyc6 gene function as targets for transcriptional activators. Plant Cell 7:623–628PubMedGoogle Scholar
  128. Randolph-Anderson BL, Sato R, Johnson AM, Harris EH, Hauser CR, Oeda K, Ishige F, Nishio S, Gillham NW, Boynton JE (1998) Isolation and characterization of a mutant protoporphyrinogen oxidase gene from Chlamydomonas reinhardtii conferring resistance to porphyric herbicides. Plant Mol Biol 38:839–859CrossRefPubMedGoogle Scholar
  129. Rochaix J-D (2001) Assembly, function, and dynamics of the photosynthetic machinery in Chlamydomonas reinhardtii. Plant Physiol 127:1394–1398CrossRefPubMedGoogle Scholar
  130. Ruban AV, Wentworth M, Yakushevska AE, Andersson M, Lee PJ, Keegstra W, Dekker JP, Boekema EJ, Jansson S, Horton P (2003) Plants lacking the main light-harvesting complex retain photosystem II macro-organization. Nature 421:648–651CrossRefPubMedGoogle Scholar
  131. Sager R (1960) Genetic systems in Chlamydomonas. Science 132:1459–1465PubMedGoogle Scholar
  132. Sato VL, Levine RP (1971) Mutant strain of Chlamydomonas reinhardtii with impaired photosynthetic phosphorylation. Plant Physiol 47:9–13Google Scholar
  133. Savard F, Richard C, Guertin M (1996) The Chlamydomonas reinhardtii LI818 gene represents a distant relative of the cabI/II genes that is regulated during the cell cycle and in response to illumination. Plant Mol Biol 32:461–473PubMedGoogle Scholar
  134. Schmid V, Cammarata K, Bruns B, Schmidt G (1997) In vitro reconstitution of the photosystem I light-harvesting complex LHCI-730: heterodimerization is required for antenna pigment organization. Proc Natl Acad Sci USA 94:7667–7672CrossRefPubMedGoogle Scholar
  135. Schroda M, Vallon O, Wollman FA, Beck CF (1999) A chloroplast-targeted heat shock protein 70 Hsp70 contributes to the photoprotection and repair of photosystem II during and after photoinhibition. Plant Cell 11:1165–1178PubMedGoogle Scholar
  136. Shepherd HS, Boynton JE, Gillham NW (1979) Mutations in nine chloroplast loci of Chlamydomonas affecting different photosynthetic functions. Proc Natl Acad Sci USA 76:1353–1357PubMedGoogle Scholar
  137. Shimogawara K, Fujiwara S, Grossman A, Usuda H (1998) High-efficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics 148:1821–1828PubMedGoogle Scholar
  138. Shrager J, Hauser C, Chang C, Harris E, Davies J, McDermott J, Tamse R, Zhang Z, Grossman A (2003) Chlamydomonas reinhardtii genome project. A guide to the generation and use of the cDNA information. Plant Physiol 131:401–408CrossRefPubMedGoogle Scholar
  139. Simpson C, Stern D (2002) The treasure trove of algal chloroplast genomes. Surprises in architecture and gene content, and their functional implications. Plant Physiol 129:957–966CrossRefPubMedGoogle Scholar
  140. Sineshchekov OA, Jung KH, Spudich JL (2002) Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 99:8689–8694PubMedGoogle Scholar
  141. Smith EF, Lefebvre PA (1996) PF16 encodes a protein with armadillo repeats and localizes to a single microtubule of the central apparatus in Chlamydomonas flagella. J Cell Biol 132:359–370PubMedGoogle Scholar
  142. Smith EF, Lefebvre PA (1997) PF20 gene product contains WD repeats and localizes to the intermicrotubule bridges in Chlamydomonas flagella. Mol Biol Cell 8:455–467PubMedGoogle Scholar
  143. Snyders S, Kohorn BD (1999) TAKs: thylakoid membrane protein kinases associated with energy transduction. J Biol Chem 274:9137–9140PubMedGoogle Scholar
  144. Snyders S, Kohorn BD (2001) Disruption of thylakoid-associated kinase 1 leads to alteration of light harvesting in Arabidopsis. J Biol Chem 276:32169–32176PubMedGoogle Scholar
  145. Somanchi A, Handley ER, Moroney JV (1998) Chlamydomonas reinhardtii cDNAs upregulated in low-CO2 conditions: expression and analyses. Can J Bot 76:1003–1009CrossRefGoogle Scholar
  146. Stevens D, Rochaix J, Purton S (1996) The bacterial phleomycin resistance gene ble as a dominant selectable marker in Chlamydomonas. Mol Gen Genet 251:23–30CrossRefPubMedGoogle Scholar
  147. Takahashi Y, Matsumoto H, Goldschmidt-Clermont M, Rochaix J-D (1994) Directed disruption of the Chlamydomonas chloroplast psbK gene destabilizes the photosystem II reaction center complex. Plant Mol Biol 24:779–788PubMedGoogle Scholar
  148. Tam L-W, Lefebvre PA (1993) Cloning of flagellar genes in Chlamydomonas reinhardtii by DNA insertional mutagenesis. Genetics 135:375–384PubMedGoogle Scholar
  149. Teramoto H, Ono T, Minagawa J (2001) Identification of Lhcb gene family encoding the light-harvesting chlorophyll-a/b proteins of photosystem II in Chlamydomonas reinhardtii. Plant Cell Physiol 42:849–856CrossRefPubMedGoogle Scholar
  150. Teramoto H, Nakamori A, Minagawa J, Ono T (2002) Light-intensity dependent expression of Lhc gene family encoding light-harvesting chlorophyll a/b proteins of photosystem II on Chlamydomonas reinhardtii. Plant Physiol 130:325–333CrossRefPubMedGoogle Scholar
  151. Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Young K, Taylor NE, Henikoff JG, Comai L, Henikoff S (2003) Large-scale discovery of induced point mutations with high-throughput tilling. Genome Res 13:524–530Google Scholar
  152. Vener AV, VanKan PJM, Rich PR, Ohad I, Andersson B (1997) Plastoquinol at the quinol oxidation site of reduced cytochrome bf mediates signal transduction between light and protein phosphorylation: thylakoid protein kinase deactivation by a single-turnover flash. Proc Natl Acad Sci USA 94:1585–1590PubMedGoogle Scholar
  153. Vener AV, Harms A, Sussman MR, Vierstra RD (2001) Mass spectrometric resolution of reversible protein phosphorylation in photosynthetic membranes of Arabidopsis thaliana. J Biol Chem 276:6959–6966PubMedGoogle Scholar
  154. Villand P, Eriksson M, Samuelsson G (1997) Regulation of genes by the environmental CO2 level. Plant Physiol 114:258–259Google Scholar
  155. Vysotskaia VS, Curtis DE, Voinov AV, Kathir P, Silflow CD, Lefebvre PA (2001) Development and characterization of genome-wide single nucleotide polymorphism markers in the green alga Chlamydomonas reinhardtii. Plant Physiol 127:386–389PubMedGoogle Scholar
  156. Walters RG, Horton P (1999) Structural and functional heterogeneity in the major light-harvesting complexes of higher plants. Photosynth Res 61:77–89CrossRefGoogle Scholar
  157. Webber AN, Su H, Binghma SE, Kass H, Krabben L, Kuhn M, Schlodder E, Lubitz W (1996) Site-directed mutations affecting the spectroscopic characteristics and mid-point potential of the primary donor in photosystem I. Biochemistry 39:12857–12863CrossRefGoogle Scholar
  158. Whitelegge JP, Koo D, Erickson J (1992) Site-directed mutagenesis of the chloropolast psbA gene encoding the D1 polypeptide of photosystem II in Chlamydomonas reinhardtii changes at aspartate 170 affect the assembly of a functional water-splitting manganese cluster. In: Murata N (ed) Research in photosynthesis. Kluwer, Dordrecht, pp 151–154Google Scholar
  159. Wilson NF, Lefebvre PA (2002) Characterization of GSK3, a flagellar kinase with a putative role in the regulation of flagella length. Int Chlamydomonas Conf Abstr 10
  160. Woessner JP, Masson A, Harris EH, Bennoun P, Gillham NW, Boynton JE (1984) Molecular and genetic-analysis of the chloroplast ATPase of Chlamydomonas. Plant Mol Biol 3:177–190Google Scholar
  161. Wollman FA (2001) State transitions reveal the dynamics and flexibility of the photosynthetic apparatus. EMBO J 20:3623–3630PubMedGoogle Scholar
  162. Wykoff DD, Davies JP, Melis A, Grossman AR (1998) The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiol 117:129–139CrossRefPubMedGoogle Scholar
  163. Wykoff DD, Grossman AR, Weeks DP, Usuda H, Shimogawara K (1999) Psr1, a nuclear localized protein that regulates phosphorus metabolism in Chlamydomonas. Proc Natl Acad Sci USA 96:15336–15341PubMedGoogle Scholar
  164. Xiong J, Hutchinson RS, Sayre RT, Govindjee (1997) Modification of the photosystem II acceptor side function in a D1 mutant (arginine-269-glycine) of Chlamydomonas reinhardtii. Biochim Biophys Acta 1322:60–76CrossRefPubMedGoogle Scholar
  165. Xu H, Vavilin D, Funk C, Vermaas W (2002) Small Cab-like proteins regulating tetrapyrrole biosynthesis in the cyanobacterium Synechocystis sp. PCC 6803. Plant Mol Biol 49:149–160CrossRefPubMedGoogle Scholar
  166. Yildiz FH, Davies JP, Grossman AR (1996) Sulfur availability and the SAC1 gene control adenosine triphosphate sulfurylase gene expression in Chlamydomonas reinhardtii. Plant Physiol 112:669–675PubMedGoogle Scholar
  167. Zhang D, Lefebvre PA (1997) FAR1, a negative regulatory locus required for the repression if the nitrate reductase gene in Chlamydomonas reinhardtii. Genetics 146:121–133PubMedGoogle Scholar
  168. Zhang H, Herman PL, Weeks DP (1994) Gene isolation through genomic complementation using an indexed library of Chlamydomonas reinhardtii DNA. Plant Mol Biol 24:663–672PubMedGoogle Scholar
  169. Zhu G, Spreitzer RJ (1996) Directed mutagenesis of chloroplast ribulose-1,5-bisphosphate carboxylase-oxygenase. Loop 6 substitutions complement for structural stability but decrease catalytic efficiency. J Biol Chem 271:18494–18498CrossRefPubMedGoogle Scholar
  170. Zito F, Finazzi G, Delosme R, Nitschke W, Picot D, Wollman FA (1999) The Qo site of cytochrome b6f complexes controls the activation of the LHCII kinase. EMBO J 18:2961–2969PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.The Department of Plant BiologyThe Carnegie Institution of WashingtonStanfordUSA

Personalised recommendations