Current Genetics

, Volume 43, Issue 5, pp 371–377 | Cite as

Comparison of different transformation methods for Aspergillus giganteus

Technical Note


Four different transformation methods were tested and compared in an attempt to facilitate the genetic transformation of Aspergillus giganteus, the producer of an antifungal protein (AFP). The fungus was transformed to hygromycin B resistance, using the hph gene of Escherichia coli by protoplast transformation, electroporation, biolistic transformation, and Agrobacterium tumefaciens-mediated transformation. Electroporation and biolistic transformation were found to be inappropriate for transforming A. giganteus, due to a low transformation yield. The conventional transformation technique based on protoplasts yielded up to 55 transformants in 108 protoplasts/µg DNA and was enhanced to 140-fold by A. tumefaciens-mediated transfer of its T-DNA. Here, the germination time prior to cocultivation and the fungus:bacterium ratio were found to alter the transformation efficiency. Southern blot analysis revealed that the A. giganteus transformants contained a randomly integrated single T-DNA copy, whereas multiple integration events were frequent in transformants obtained by the protoplast method.


Protoplast transformation Electroporation Biolistic transformation Agrobacterium tumefaciens-mediated transformation 



We would like to thank Susanne Engelhardt and Barbara Walewska for technical assistance. We thank also Cees van den Hondel and Paul Hooykaas for providing us with the plasmids pAN7-1 and pUR5750, respectively. We are grateful to Caroline Michielse for helpful suggestions regarding A. tumefaciens-mediated transformation. The work was carried out in compliance with the current German laws governing genetic experimentation.


  1. Abuodeh RO, Orbach MJ, Mandel MA, Das A, Galgiani JN (2000) Genetic transformation of Coccidioides immitis facilitated by Agrobacterium tumefaciens. J Infect Dis 181:2106–2110PubMedGoogle Scholar
  2. Beijersbergen A, Den Dulk-Ras A, Schilperoort RA, Hooykaas PJJ (1992) Conjugative transfer by the virulence system of Agrobacterium tumefaciens. Science 256:1324–1327Google Scholar
  3. Brown JS, Aufauvre-Brown A, Holden DW (1998) Insertional mutagenesis of Aspergillus fumigatus. Mol Gen Genet 259:327–335CrossRefPubMedGoogle Scholar
  4. Bundock P, Dulk-Ras A den, Beijersbergen A, Hooykaas PJ (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J 3:3206–3214Google Scholar
  5. Cove DJ (1966) The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim Biophys Acta 113:51–56PubMedGoogle Scholar
  6. Den Dulk-Ras A, Hooykaas PJJ (1995) Electroporation of Agrobacterium tumefaciens. In: Nickoloff JA (ed) Plant cell electroporation and electrofusion protocols. (Methods in molecular biology, vol 55) Humana Press, Totowa, N.J pp 63–73Google Scholar
  7. Finer JJ, Vain P, Jones MW, McMullen MD (1992) Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Rep 11:232–238Google Scholar
  8. Fungaro MH, Rech E, Muhlen GS, Vainstein MH, Pascon RC, Queiroz MV de, Pizzirani-Kleiner AA, Azevedo JL de (1995) Transformation of Aspergillus nidulans by microprojectile bombardment on intact conidia. FEMS Microbiol Lett 125:293–297CrossRefPubMedGoogle Scholar
  9. Gouka RJ, Gerk C, Hooykaas PJJ, Bundock P, Musters W, Verrips CT, Groot MJA de (1999) Transformation of Aspergillus awamori by Agrobacterium tumefaciens–mediated homologous recombination. Nat Biotechnol 17:598–601CrossRefPubMedGoogle Scholar
  10. Groot MJA de, Bundock P, Hooykaas PJJ, Beijersbergen A (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16:839–842PubMedGoogle Scholar
  11. Hanif M, Pardo AG, Gorfer M, Raudaskoski M (2002) T-DNA transfer and integration in the ectomycorrhizal fungus Suillus bovinus using hygromycin B as a selectable marker. Curr Genet 41:183–188CrossRefPubMedGoogle Scholar
  12. Lacadena J, Martinez del Pozo A, Gasset M, Patino B, Campos-Olivas R, Vazquez C, Martinez-Ruiz A, Mancheno JM, Onaderra M, Gavilanes JG (1995) Characterization of the antifungal protein secreted by the mould Aspergillus giganteus. Arch Biochem Biophys 324:273–281PubMedGoogle Scholar
  13. Malonek S, Meinhardt F (2001) Agrobacterium tumefaciens-mediated genetic transformation of the phytopathogenic ascomycete Calonectria morganii. Curr Genet 40:152–155PubMedGoogle Scholar
  14. Meyer V, Wedde M, Stahl U (2002) Transcriptional regulation of the antifungal protein in Aspergillus giganteus. Mol Genet Genomics 266:747–757PubMedGoogle Scholar
  15. Miller H (1987) Practical aspects of preparing phage and plasmid DNA: growth, maintenance and storage of bacteria and bacteriophage. Methods Enzymol 152:145–170PubMedGoogle Scholar
  16. Mullins ED, Chen X, Romaine P, Raina R, Geiser DM, Kang S (2001) Agrobacterium-mediated transformation of Fusarium oxysporum: an efficient tool for insertional mutagenesis and gene transfer. Phytopathology 91:173–180Google Scholar
  17. Mysore KS, Kumar CT, Gelvin SB (2000) Arabidopsis ecotypes and mutants that are recalcitrant to Agrobacterium root transformation are susceptible to germ-line transformation. Plant J 21:9–16CrossRefPubMedGoogle Scholar
  18. Punt PJ, Oliver RP, Dingemanse MA, Pouwels PH, Hondel CAMJJ van den (1987) Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. Gene 56:117–124PubMedGoogle Scholar
  19. Ruiz-Díez B (2002) Strategies for the transformation of filamentous fungi. J Appl Microbiol 92:189–195CrossRefPubMedGoogle Scholar
  20. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.Google Scholar
  21. Sanford JC, Smith FD, Russell JA (1993) Optimizing the biolistic process for different biological applications. Methods Enzymol 217:483–509PubMedGoogle Scholar
  22. Theis T, Wedde M, Meyer V, Stahl U (2003) The antifungal protein from Aspergillus giganteus causes membrane permeabilization. Antimicrob Agents Chemother 47:588–93CrossRefPubMedGoogle Scholar
  23. Thompson JR, Register E, Curotto J, Kurtz M, Kelly R (1998) An improved protocol for the preparation of yeast cells for transformation by electroporation. Yeast 14:565–571CrossRefPubMedGoogle Scholar
  24. Vila L, Lacadena V, Fontanet P, Pozo AM del, Segundo BS (2001) A protein from the mold Aspergillus giganteus is a potent inhibitor of fungal plant pathogens. Mol Plant-Microbe Interact 14:1327–1331Google Scholar
  25. Wnendt S, Jacobs M, Stahl U (1990) Transformation of Aspergillus giganteus to hygromycin B resistance. Curr Genet 17:21–24PubMedGoogle Scholar
  26. Yelton MM, Hamer JE, Timberlake WE (1984) Transformation of Aspergillus nidulans by using a trpC plasmid. Proc Natl Acad Sci USA 81:1470–1474Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Vera Meyer
    • 1
  • Dirk Mueller
    • 1
  • Till Strowig
    • 1
  • Ulf Stahl
    • 1
  1. 1.Fachgebiet Mikrobiologie und Genetik, Institut für BiotechnologieTechnische Universität BerlinBerlinGermany

Personalised recommendations