Skip to main content
Log in

The Nag1 N-acetylglucosaminidase of Trichoderma atroviride is essential for chitinase induction by chitin and of major relevance to biocontrol

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

The nag1 gene of the mycoparasitic fungus Trichoderma atroviride encodes a 73-kDa N-acetyl-β-d-glucosaminidase, which is secreted into the medium and partially bound to the cell wall. To elucidate the role of this enzyme in chitinase induction and biocontrol, a nag1-disruption mutant was prepared. It displayed only 4% of the original N-acetyl-β-d-glucosaminidase activity, indicating that the nag1 gene product accounts for the majority of this activity in T. atroviride. The nag1-disruption strain was indistinguishable from the parent strain in growth and morphology, but exhibited delayed autolysis. Northern analysis showed that colloidal chitin disruption does not induce ech42 gene transcription in the nag1-disruption strain. Enzyme activities capable of hydrolysing p-nitrophenyl-N,N′-diacetylchitobioside and p-nitrophenyl-N,N′-diacetylchitotriose were also absent from the nag1-disruption strain under the same conditions. Retransformation of the T. atroviride nag1-disruption strain with the nag1 gene essentially led to the parent-type behaviour in all these experiments. However, addition of N-acetyl-β-d-glucosaminidase to the medium of the nag1-disruption strain did not rescue the mutant phenotype. The disruption-nag1 strain showed 30% reduced ability to protect beans against infection by Rhizoctonia solani and Sclerotinia sclerotiorum. The data indicate that nag1 is essential for triggering chitinase gene expression in T. atroviride and that its functional impairment reduces biocontrol by T. atroviride by a significant extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1A–C.
Fig. 2.

Similar content being viewed by others

References

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1990) Current protocols in molecular biology. Wiley-Interscience, New York

  • Baek JM, Howell CR, Kenerley CM (1999) The role of an extracellular chitinase from Trichoderma virens Gv29-8 in the biocontrol of Rhizoctonia solani. Curr Genet 35:41–50

    Article  CAS  PubMed  Google Scholar 

  • Carsolio C, Gutierrez A, Jiménez B, Van Montagu M, Herrera-Estrella A (1994) Characterization of ech42, a Trichoderma harzianum endochitinase gene expressed during mycoparasitism. Proc Natl Acad Sci USA 91:10903–10907

    CAS  PubMed  Google Scholar 

  • Carsolio C, Benhamou N, Haran S, Cortes C, Gutierrez A, Chet I, Herrera-Estrella A (1999) Role of the Trichoderma harzianum endochitinase gene, ech42, in mycoparasitism. Appl Environ Microbiol 65:929–935

    CAS  PubMed  Google Scholar 

  • Chet I, Benhamou N, Haran S (1998) Mycoparasitism and lytic enzymes. In: Harman GE, Kubicek CP (eds) Enzymes, biological control and commercial application. (Trichoderma and Gliocladium, vol 2) Taylor and Francis, London, pp 153–171

  • Cortes C, Gutierrez A, Olmedo V, Inbar J, Chet I, Herrera-Estrella A (1998) The expression of genes involved in parasitism by Trichoderma harzianum is triggered by a diffusible factor. Mol Gen Genet 260:218–225

    PubMed  Google Scholar 

  • Dal Soglio FK, Bertagnolli BL, Sinclair JB, Yu G-Y, Eastburn DM (1998) Production of chitinolytic enzymes and endoglucanase in the soybean rhizosphere in the presence of Trichoderma harzianum and Rhizoctonia solani. Biol Control 12:111–117

    Article  Google Scholar 

  • Draborg H, Kaupinnen S, Dalboge H, Christgau S (1995) Molecular cloning and expression in Saccharomyces cerevisiae of two exochitinases from Trichoderma harzianum. Biochem Mol Biol Int 36:781–791

    CAS  PubMed  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    CAS  Google Scholar 

  • Garcia I, Lora JM, Cruz J de la, Benitez T, Llobell A, Pintor-Toro A (1994) Cloning and characterization of a chitinase (chit42) cDNA from the mycoparasitic fungus Trichoderma harzianum. Curr Genet 27:83–89

    CAS  PubMed  Google Scholar 

  • Griffiths D (1994) Fungal physiology. Wiley, New York

  • Haran S, Schickler H, Oppenheim A, Chet I (1995) New components of the chitinolytic system of Trichoderma harzianum. Mycol Res 99:441–446

    CAS  Google Scholar 

  • Harman GE, Björkman T (1998) Potential and existing uses of Trichoderma and Gliocladium for plant disease control and plant growth enhancement. In: Harman GE, Kubicek CP (eds) Enzymes, biological control and commercial application. (Trichoderma and Gliocladium, vol 2) Taylor and Francis, London, pp 229–265

  • Harman GE, Hayes CK, Lorito M, Broadway RM, Di Pietro A, Tronsmo A (1993) Chitinolytic enzymes of Trichoderma harzianum: purification of chitobiosidase and endochitinase. Phytopathology 83:313–318

    CAS  Google Scholar 

  • Hjeljord L, Tronsmo A (1998) Trichoderma and Gliocladium in biological control: an overview. In: Harman GE, Kubicek CP (eds) Enzymes, biological control and commercial application. (Trichoderma and Gliocladium, vol 2) Taylor and Francis, London, pp 129–151

  • Inbar J, Chet I (1995) The role of recognition in the induction of specific chitinases during mycoparasitism by Trichoderma harzianum. Microbiology 141:2823–2829

    CAS  PubMed  Google Scholar 

  • Kelly JM, Hynes MJ (1985) Transformation of Aspergillus niger by the amdS gene of Aspergillus nidulans. EMBO J 4:475–479

    CAS  PubMed  Google Scholar 

  • Kim DJ, Baek JM, Uribe P, Kenerley CM, Cook DR (2002) Cloning and characterization of multiple glycosyl hydrolase genes from Trichoderma virens. Curr Genet 40:374–384

    Article  CAS  PubMed  Google Scholar 

  • Koga K, Iwamoto Y, Sakamoto H, Hatano K, Sano M, Kato I (1991) Purification and characterization of β-N-acetylhexosaminidase from Trichoderma harzianum. Agric Biol Chem 55:2817–2833

    CAS  PubMed  Google Scholar 

  • Kubicek CP, Mach RL, Peterbauer CK, Lorito M (2001) Trichoderma chitinases: from genes to biocontrol. J Plant Pathol 83:11–23

    CAS  Google Scholar 

  • Kullnig CM, Krupica T, Woo SL, Mach RL, Rey M, Benitez T, Lorito M, Kubicek CP (2001) Confusion abounds over identity of Trichoderma biocontrol isolates. Mycol Res 105:769–772

    Article  Google Scholar 

  • Lorito M (1998) Chitinolytic enzymes ands their genes. In: Harman GE, Kubicek CP (eds) Enzymes, biological control and commercial application. (Trichoderma and Gliocladium, vol 2) Taylor and Francis, London, pp 73–99

  • Lorito M, Harman GE, Hayes CK, Broadway RM, Tronsmo A, Woo SL, Di Pietro A (1993) Chitinolytic enzymes produced by Trichoderma harzianum: antifungal activity of purified endochitinase and chitobiosidase. Phytopathology 83:302–307

    CAS  Google Scholar 

  • Lorito M, Hayes CK, Di Pietro A, Woo SL, Harman GE (1994) Purification, characterization and synergistic activity of a glucan 1,3-β-glucosidase and N-acetyl-β-glucosaminidase from Trichoderma harzianum. Phytopathology 84:398–405

    CAS  Google Scholar 

  • Lorito M, Woo SL, D′Ambrosio M, Harman GE, Hayes CK, Kubicek CP, Scala F (1996) Synergistic interaction between cell wall degrading enzymes and membrane affecting compounds. Mol Plant Microbe Interact 9:206–213

    CAS  Google Scholar 

  • Mach RL, Peterbauer CK, Payer K, Jaksits S, Woo SL, Zeilinger S, Kullnig CM, Lorito M, Kubicek CP (1999) Expression of two major chitinase genes of Trichoderma atroviride (T. harzianum P1) is triggered by different regulatory signals. Appl Environ Microbiol 65:1858–1863

    CAS  PubMed  Google Scholar 

  • Margolles-Clark E, Harman GE, Penttilä M (1996) Enhanced expression of endochitinase in Trichoderma harzianum with the cbh1 promoter of Trichoderma reesei. Appl Environ Microbiol 62:2152–2155

    CAS  Google Scholar 

  • Mercedes Dana M de la, Limon CM, Meijas R, Mach RL, Pintor-Toro JA, Kubicek CP (2001) Regulation of chitinase 33 (chit33) gene expression in Trichoderma harzianum. Curr Genet 38:335–342

    PubMed  Google Scholar 

  • Peterbauer C, Lorito M, Hayes CK, Harman GE, Kubicek CP (1996) Molecular cloning and expression of nag1 (N-acetyl-β-d-glucosaminidase-encoding) gene from Trichoderma harzianum P1. Curr Genet 29:812–820

    Google Scholar 

  • Peterbauer CK, Brunner K, Mach RL, Kubicek CP (2002a) Identification of the N-acetyl-d-glucosamine-inducible element in the promoter of the Trichoderma atroviride nag1 gene encoding N-acetyl-glucosaminidase. Mol Genet Genomics 267:162–170

    Google Scholar 

  • Peterbauer CK, Litscher D, Kubicek CP (2002b) The Trichoderma atroviride seb1-(stress response element binding) gene encodes an AGGGG-binding protein which is involved in osmotic stress response. Mol Genet Genomics 268:223–231

    Article  CAS  PubMed  Google Scholar 

  • Reyes F, Calatayud J, Vazquez C, Martinez MJ (1989a) Beta-N-acetylglucosaminidase from Aspergillus nidulans which degrades chitin oligomers during autolysis. FEMS Microbiol Lett 53:83–87

    Article  CAS  PubMed  Google Scholar 

  • Reyes F, Calatayud J, Martinez MJ (1989b) Endochitinases from Aspergillus nidulans Beta-N-acetylglucosaminidase from Aspergillus nidulans implicated in the autolysis of the cell-wall. FEMS Microbiol Lett 51:119–124

    Article  CAS  PubMed  Google Scholar 

  • Sahai AS, Manocha MS (1993) Chitinases of fungi and plants: their involvement in morphogenesis and host-parasite interaction. FEMS Microbiol Rev 11:317–338

    CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Plainview, N.Y.

    Google Scholar 

  • Seiboth B, Hakola S, Mach RL, Suominen PL, Kubicek CP (1997) Role of four major cellulases in triggering of cellulase gene expression by cellulose in Trichoderma reesei. J Bacteriol 179:5318–5320

    CAS  PubMed  Google Scholar 

  • Suominen PL, Mantylä AL, Karhunen T, Hakola S, Nevalainen H (1993) High frequency one-step gene replacement in Trichoderma reesei. II. Effects of deletions of individual cellulase genes. Mol Gen Genet 241:523–530

    CAS  PubMed  Google Scholar 

  • Viterbo A, Haran S, Friesem D, Ramot O, Chet I (2001) Antifungal activity of a novel endochitinase gene (chit36) from Trichoderma harzianum Rifai TM. FEMS Microbiol Lett 200:169–174

    CAS  PubMed  Google Scholar 

  • White S, McIntyre M, Berry DR, McNeil B (2002) The autolysis of industrial filamentous fungi. Crit Rev Biotechnol 22:1–14

    PubMed  Google Scholar 

  • Woo SL, Donzelli B, Scala F, Mach RL, Harman GE, Kubicek CP, Del Sorbo G, Lorito M (1998) Disruption of ech42 (endochitinase-encoding) gene affects biocontrol activity in Trichoderma harzianum strain P1. Mol Plant Microbe Interact 12:419–429

    Google Scholar 

  • Wrathall CR, Tatum EL (1973) The peptides of the hyphal wall of Neurospora crassa. J Gen Microbiol 78:139–153

    CAS  PubMed  Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    PubMed  Google Scholar 

  • Zeilinger S, Galhaup C, Payer K, Woo SL, Mach RL, Fekete C, Lorito M, Kubicek CP (1999) Chitinase gene expression during mycoparasitic interaction of Trichoderma harzianum with its host. Fungal Genet Biol 26:131–140

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Austrian Science Foundation to C.K.P. (P-13170 MOB) and S.Z. (P-15483). M.L. and C.P.K. also recognize the support of the EU-funded TRICHOEST project (QLRT-2001-02032). M.L. recognizes the grants FIRB 2002 [Genomica funzionale dell′interazione trapiante e micro-organismi (patogeni, antagonisti e simbiotici): determinanti coinvolti nella produzione agricola e protezione dell′ambiente] and MIPAF (Risorse genetiche di organismi utili per il miglioramento di specie di interesse agrario e per un′agricoltura sostenibile). K.B.′s stay in Naples was supported by a grant from the ÖAD (Scientific-technological collaboration between Austria and Italy) and by the Ausseninstitut of Technische Universität Wien. S.Z. is the recipient of an APART fellowship (number 10764)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian P. Kubicek.

Additional information

Communicated by U. Kück

K. Brunner and C.K. Peterbauer contributed equally to the present work and are listed in alphabetical order

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brunner, K., Peterbauer, C.K., Mach, R.L. et al. The Nag1 N-acetylglucosaminidase of Trichoderma atroviride is essential for chitinase induction by chitin and of major relevance to biocontrol. Curr Genet 43, 289–295 (2003). https://doi.org/10.1007/s00294-003-0399-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-003-0399-y

Keywords

Navigation