MIF in kidney diseases

A story of Dr. Jekyll and Mr. Hyde
Lectures Laureates: Rudolf-Virchow-Laureate 2018



Macrophage migration-inhibitory factor (MIF) is a cytokine best known for its proinflammatory and disease-aggravating role in a number of conditions, including atherosclerosis, autoimmune diseases, sepsis, and glomerulonephritides.


In our studies we aimed to define the role of MIF on local renal resident cells, in particular the renal epithelium.


We have shown that MIF exerts local effects on glomerular cells, in particular the parietal epithelial cells and mesangial cells, promoting their pathological proliferation and aggravating disease course of a murine model of immune-mediated glomerulonephritis. In contrast, in a large set of animal and in vitro experiments, we have shown that in the setting of chronic kidney disease, MIF had an unexpected and potent antifibrotic and anti-inflammatory effect. This was mediated by enhanced regeneration and reduced cell-cycle arrest of tubular epithelial cells. Finally, in a combined approach using clinical studies, animal models, and in vitro experiments, we have shown that MIF is also renoprotective in the setting of acute kidney injury. In this setting, MIF-modulated programmed cell death of tubular cells and thereby reduced necroinflammation and kidney injury.


Taken together, MIF has a dual role in kidney diseases, promoting (auto)immune glomerular diseases and limiting tubular cell injury in the setting of acute and chronic kidney diseases. These data suggest potential safety issues of systemic MIF targeted therapies, but also open new therapeutic options by targeting MIF or its analogues to tubular cells.


Acute kidney injury Chronic renal insufficiency Glomerulonephritis Macrophage migration-inhibitory factors Cell proliferation 

MIF in Nierenerkrankungen

Eine Geschichte über Dr. Jekyll und Mr. Hyde



„Macrophage migration-inhibitory factor“ (MIF) ist ein Zytokin, das bei einer Vielzahl von Erkrankungen einschließlich Atherosklerose, Autoimmunkrankheiten, Sepsis und Glomerulonephritiden eine proinflammatorische Rolle spielt.

Material und Methoden

In unseren Studien haben wir die Funktion von MIF auf die residenten Nierenzellen, insbesondere die renalen Tubulusepithelien untersucht.


Wir konnten zeigen, dass MIF direkte lokale Effekte auf die pathologische Proliferation von glomerulären Zellen ausübt, insbesondere auf die parietalen Epithelzellen und Mesangialzellen, und dadurch den Krankheitsverlauf einer immunvermittelten Glomerulonephritis aggraviert. Im Gegensatz dazu haben wir in einer Reihe von Tier- und In-vitro-Experimenten gezeigt, dass MIF im Rahmen einer chronischen Nierenerkrankung eine unerwartet stark antifibrotische und entzündungshemmende Wirkung hat. Dies ist mechanistisch durch Förderung der Regeneration und Hemmung des Zellzyklusarrestes der tubulären Epithelzellen vermittelt. Schließlich haben wir in einem kombinierten Ansatz unter Verwendung von klinischen Studien und Tiermodellen sowie mittels In-vitro-Experimenten gezeigt, dass MIF auch im Rahmen der akuten Nierenschädigung renoprotektiv wirkt. In diesem Kontext modulierte MIF den programmierten Zelltod und verringerte dadurch die Nekroinflammation und den Nierenschaden.


MIF hat eine duale Rolle bei Nierenerkrankungen. Einerseits fördert es immunvermittelte glomeruläre Erkrankungen, andererseits limitiert es tubulären Zellschaden bei akuten und chronischen Nierenerkrankungen. Diese Daten weisen auf mögliche Nebenwirkungen von systemischen MIF-gerichteten Therapien hin, eröffnen aber auch neue Möglichkeiten einer tubuluszellgerichteten Therapie von MIF oder seinen Analoga.


Akute Nierenschädigung Chronische Niereninsuffizienz Glomerulonephritis „Macrophage migration-inhibitory factors“ Zellteilung 



I am particularly grateful for the excellent and unique commitment and scientific work of Dr. Sonja Djudjaj, who was instrumental in all these projects. I would also like to express a special thanks to my mentors, Prof. Ruth Knüchel-Clarke, Prof. Kerstin Amann, and Prof. Jürgen Floege. My thanks also go to all the present and past members of the LaBooratory of Nephropathology and the many cooperation partners.


These studies were supported by the German Research Foundation (DFG: SFB/TRR57, SFB/TRR219, BO3755/3-1, and BO 3755/6-1), the German Ministry of Education and Research (BMBF: STOP-FSGS-01GM1518A), the RWTH START program (110/15), and the Interdisciplinary Center for Clinical Research (IZKF, O3-7).

Compliance with ethical guidelines

Conflict of interest

P. Boor declares that he has no competing interests.

This article does not contain any studies with human participants or animals performed by any of the authors.

The supplement containing this article is not sponsored by industry.


  1. 1.
    Amdur RL, Chawla LS, Amodeo S, Kimmel PL, Palant CE (2009) Outcomes following diagnosis of acute renal failure in U.S. veterans: focus on acute tubular necrosis. Kidney Int 76:1089–1097CrossRefGoogle Scholar
  2. 2.
    Boor P, Floege J (2015) Renal allograft fibrosis: biology and therapeutic targets. Am J Transplant 15:863–886CrossRefGoogle Scholar
  3. 3.
    Boor P, Ostendorf T, Floege J (2014) PDGF and the progression of renal disease. Nephrol Dial Transplant 29:I45–I54CrossRefGoogle Scholar
  4. 4.
    Boor P, Ostendorf T, Floege J (2010) Renal fibrosis: novel insights into mechanisms and therapeutic targets. Nat Rev Nephrol 6:643–656CrossRefGoogle Scholar
  5. 5.
    Couser WG, Remuzzi G, Mendis S, Tonelli M (2011) The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int 80:1258–1270CrossRefGoogle Scholar
  6. 6.
    Djudjaj S, Boor P (2018) Cellular and molecular mechanisms of kidney fibrosis. Mol Aspects Med. CrossRefPubMedGoogle Scholar
  7. 7.
    Djudjaj S, Lue H, Rong S, Papasotiriou M, Klinkhammer BM, Zok S, Klaener O, Braun GS, Lindenmeyer MT, Cohen CD, Bucala R, Tittel AP, Kurts C, Moeller MJ, Floege J, Ostendorf T, Bernhagen J, Boor P (2016) Macrophage migration inhibitory factor mediates proliferative GN via CD74. J Am Soc Nephrol 27:1650–1664CrossRefGoogle Scholar
  8. 8.
    Djudjaj S, Martin IV, Buhl EM, Nothofer NJ, Leng L, Piecychna M, Floege J, Bernhagen J, Bucala R, Boor P (2017) Macrophage migration inhibitory factor limits renal inflammation and fibrosis by counteracting tubular cell cycle arrest. J Am Soc Nephrol 28:3590–3604CrossRefGoogle Scholar
  9. 9.
    Hallan SI, Coresh J, Astor BC, Asberg A, Powe NR, Romundstad S, Hallan HA, Lydersen S, Holmen J (2006) International comparison of the relationship of chronic kidney disease prevalence and ESRD risk. J Am Soc Nephrol 17:2275–2284CrossRefGoogle Scholar
  10. 10.
    Hoi AY, Hickey MJ, Hall P, Yamana J, O’Sullivan KM, Santos LL, James WG, Kitching AR, Morand EF (2006) Macrophage migration inhibitory factor deficiency attenuates macrophage recruitment, glomerulonephritis, and lethality in MRL/lpr mice. J Immunol 177:5687–5696CrossRefGoogle Scholar
  11. 11.
    Hoi AY, Iskander MN, Morand EF (2007) Macrophage migration inhibitory factor: a therapeutic target across inflammatory diseases. Inflamm Allergy Drug Targets 6:183–190CrossRefGoogle Scholar
  12. 12.
    Jha V, Garcia-Garcia G, Iseki K, Li Z, Naicker S, Plattner B, Saran R, Wang AY, Yang CW (2013) Chronic kidney disease: global dimension and perspectives. Lancet 382:260–272CrossRefGoogle Scholar
  13. 13.
    Kuppe C, Grone HJ, Ostendorf T, van Kuppevelt TH, Boor P, Floege J, Smeets B, Moeller MJ (2015) Common histological patterns in glomerular epithelial cells in secondary focal segmental glomerulosclerosis. Kidney Int 88:990–998CrossRefGoogle Scholar
  14. 14.
    Lan HY, Bacher M, Yang N, Mu W, Nikolic-Paterson DJ, Metz C, Meinhardt A, Bucala R, Atkins RC (1997) The pathogenic role of macrophage migration inhibitory factor in immunologically induced kidney disease in the rat. J Exp Med 185:1455–1465CrossRefGoogle Scholar
  15. 15.
    Leng L, Chen L, Fan J, Greven D, Arjona A, Du X, Austin D, Kashgarian M, Yin Z, Huang XR, Lan HY, Lolis E, Nikolic-Paterson D, Bucala R (2011) A small-molecule macrophage migration inhibitory factor antagonist protects against glomerulonephritis in lupus-prone NZB/NZW F1 and MRL/lpr mice. J Immunol 186:527–538CrossRefGoogle Scholar
  16. 16.
    Leung JC, Chan LY, Tsang AW, Liu EW, Lam MF, Tang SC, Lai KN (2004) Anti-macrophage migration inhibitory factor reduces transforming growth factor-beta 1 expression in experimental IgA nephropathy. Nephrology, dialysis, transplantation. Proc Eur Dial Transplant Assoc Eur Ren Assoc 19:1976–1985Google Scholar
  17. 17.
    Linkermann A, Stockwell BR, Krautwald S, Anders HJ (2014) Regulated cell death and inflammation: an auto-amplification loop causes organ failure. Nat Rev Immunol 14:759–767CrossRefGoogle Scholar
  18. 18.
    Mehta RL, Cerda J, Burdmann EA, Tonelli M, Garcia-Garcia G, Jha V, Susantitaphong P, Rocco M, Vanholder R, Sever MS, Cruz D, Jaber B, Lameire NH, Lombardi R, Lewington A, Feehally J, Finkelstein F, Levin N, Pannu N, Thomas B, Aronoff-Spencer E, Remuzzi G (2015) International Society of Nephrology’s 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): a human rights case for nephrology. Lancet 385:2616–2643CrossRefGoogle Scholar
  19. 19.
    Ochi A, Chen D, Schulte W, Leng L, Moeckel N, Piecychna M, Averdunk L, Stoppe C, Bucala R, Moeckel G (2017) MIF-2/D-DT enhances proximal tubular cell regeneration through SLPI- and ATF4-dependent mechanisms. Am J Physiol Renal Physiol 313:F767–F780CrossRefGoogle Scholar
  20. 20.
    Qi D, Hu X, Wu X, Merk M, Leng L, Bucala R, Young LH (2009) Cardiac macrophage migration inhibitory factor inhibits JNK pathway activation and injury during ischemia/reperfusion. J Clin Invest 119:3807–3816CrossRefGoogle Scholar
  21. 21.
    Smeets B, Moeller MJ (2012) Parietal epithelial cells and podocytes in glomerular diseases. Semin Nephrol 32:357–367CrossRefGoogle Scholar
  22. 22.
    Smeets B, Stucker F, Wetzels J, Brocheriou I, Ronco P, Grone HJ, D’Agati V, Fogo AB, van Kuppevelt TH, Fischer HP, Boor P, Floege J, Ostendorf T, Moeller MJ (2014) Detection of activated parietal epithelial cells on the glomerular tuft distinguishes early focal segmental glomerulosclerosis from minimal change disease. Am J Pathol 184:3239–3248CrossRefGoogle Scholar
  23. 23.
    Starlets D, Gore Y, Binsky I, Haran M, Harpaz N, Shvidel L, Becker-Herman S, Berrebi A, Shachar I (2006) Cell-surface CD74 initiates a signaling cascade leading to cell proliferation and survival. Blood 107:4807–4816CrossRefGoogle Scholar
  24. 24.
    Stoppe C, Averdunk L, Goetzenich A, Soppert J, Marlier A, Kraemer S, Vieten J, Coburn M, Kowark A, Kim BS, Marx G, Rex S, Ochi A, Leng L, Moeckel G, Linkermann A, El Bounkari O, Zarbock A, Bernhagen J, Djudjaj S, Bucala R, Boor P (2018) The protective role of macrophage migration inhibitory factor in acute kidney injury after cardiac surgery. Sci Transl Med 10:eaan4886CrossRefGoogle Scholar
  25. 25.
    Yang L, Besschetnova TY, Brooks CR, Shah JV, Bonventre JV (2010) Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med 16:535–543CrossRefGoogle Scholar
  26. 26.
    Yang N, Nikolic-Paterson DJ, Ng YY, Mu W, Metz C, Bacher M, Meinhardt A, Bucala R, Atkins RC, Lan HY (1998) Reversal of established rat crescentic glomerulonephritis by blockade of macrophage migration inhibitory factor (MIF): potential role of MIF in regulating glucocorticoid production. Mol Med 4:413–424CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Pathology, University ClinicRWTH University of AachenAachenGermany
  2. 2.Division of NephrologyRWTH University of AachenAachenGermany

Personalised recommendations