Advertisement

Der Pathologe

, Volume 39, Issue 2, pp 125–131 | Cite as

Neue Aspekte zum Riesenzelltumor des Knochens

  • J. Lüke
  • M. Hasenfratz
  • P. Möller
  • T. F. E. Barth
Schwerpunkt: Knorpel, Knochen, Chorda – Molekulare Pathologie

Zusammenfassung

Der Riesenzelltumor des Knochens (RZT) gehört mit zu den riesenzellhaltigen Läsionen des Knochens und ist differenzialdiagnostisch von dem nichtossifizierenden Fibrom, der aneurysmatischen Knochenzyste, dem Chondroblastom, dem „braunen Tumor“ und riesenzellhaltigen Osteosarkomen abzugrenzen. Molekularpathologisch gelingt die Diagnose des RZT heute sicher durch den Nachweis der G34W-Mutation auf Histon 3 mittels Sequenzierung oder immunhistologischen Färbungen mit einem mutationsspezifischen Antikörper gegen G34W. Besorgniserregend sind in jüngster Zeit aufkommende Berichte über eine Pathomorphose unter Denosumab-Therapie bis hin zur Beschreibung von Sarkomen. Der Pathologe sollte bei der Beurteilung von riesenzellhaltigen Läsionen das morphologische Spektrum des RZT von den übrigen Differenzialdiagnosen abgrenzen.

Schlüsselwörter

Riesenzellhaltige Läsion Histon 3 Differenzialdiagnose H3F3A-Mutation Denosumab 

New aspects on giant cell tumor of bone

Abstract

A giant cell tumor of bone (GCTB) is one of the giant cell-rich lesions of bone and has to be differentiated from non-ossifying fibroma, aneurysmatic bone cyst, chondroblastoma, “brown tumor” and osteosarcoma containing giant cells. A hallmark of GCTB is the presence of the distinct histone 3 (H3F3A) mutation G34W and its detection either by sequencing methods or using immunohistochemistry with a novel antibody against this mutational site. Worrisome is the fact that under denosumab therapy a histological change of the lesions can be seen and there are first reports of sarcomas arising after therapy. When diagnosing giant cell-rich lesions, pathologists should be aware of the various differential diagnoses and morphological spectrum within GCTB.

Keywords

Giant cell rich lesions Histone 3 Differential diagnosis H3F3A mutation Denosumab 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

J. Lüke, M. Hasenfratz, P. Möller und T.F.E. Barth geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Akpalo H, Lange C, Zustin J (2012) Discovered on gastrointestinal stromal tumour 1 (DOG1): a useful immunohistochemical marker for diagnosing chondroblastoma. Histopathology 60:1099–1106CrossRefPubMedGoogle Scholar
  2. 2.
    Al-Ibraheemi A, Inwards CY, Zreik RT et al (2016) Histologic spectrum of Giant Cell Tumor (GCT) of bone in patients 18 years of age and below: a study of 63 patients. Am J Surg Pathol 40:1702–1712CrossRefPubMedGoogle Scholar
  3. 3.
    Amary F, Berisha F, Ye H et al (2017) H3F3A (Histone 3.3) G34W immunohistochemistry: a reliable marker defining benign and malignant giant cell tumor of bone. Am J Surg Pathol 41(8):1059–1068CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Behjati S, Tarpey PS, Presneau N et al (2013) Distinct H3F3A and H3F3B driver mutations define chondroblastoma and giant cell tumor of bone. Nat Genet 45:1479–1482CrossRefPubMedGoogle Scholar
  5. 5.
    Boyce AM (2017) Denosumab: an emerging therapy in pediatric bone disorders. Curr Osteoporos Rep 15(4):283–292CrossRefPubMedGoogle Scholar
  6. 6.
    Branstetter DG, Nelson SD, Manivel JC et al (2012) Denosumab induces tumor reduction and bone formation in patients with giant-cell tumor of bone. Clin Cancer Res 18:4415–4424CrossRefPubMedGoogle Scholar
  7. 7.
    Broehm CJ, Garbrecht EL, Wood J et al (2015) Two cases of sarcoma arising in giant cell tumor of bone treated with denosumab. Case Rep Med 2015:767198CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Campanacci M (1976) Giant-cell tumor and chondrosarcomas: grading, treatment and results (studies of 209 and 131 cases). Recent Results Cancer Res 54:257–261Google Scholar
  9. 9.
    Cummins CA, Scarborough MT, Enneking WF (1996) Multicentric giant cell tumor of bone. Clin Orthop Relat Res 322:245–252CrossRefGoogle Scholar
  10. 10.
    Dahlin DC (1985) Caldwell Lecture. Giant cell tumor of bone: highlights of 407 cases. AJR Am J Roentgenol 144:955–960CrossRefPubMedGoogle Scholar
  11. 11.
    He Y, Zhang J, Ding X (2017) Prognosis of local recurrence in giant cell tumour of bone: what can we do? Radiol Med 122:505–519CrossRefPubMedGoogle Scholar
  12. 12.
    Ismail FW, Shamsudin AM, Wan Z et al (2010) Ki-67 immuno-histochemistry index in stage III giant cell tumor of the bone. J Exp Clin Cancer Res 29:25CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kervarrec T, Collin C, Larousserie F et al (2017) H3F3 mutation status of giant cell tumors of the bone, chondroblastomas and their mimics: a combined high resolution melting and pyrosequencing approach. Mod Pathol 30:393–406CrossRefPubMedGoogle Scholar
  14. 14.
    el Khalil SA, Younis A, Aziz SA et al (2004) Surgical management for giant cell tumor of bones. J Egypt Natl Canc Inst 16:145–152Google Scholar
  15. 15.
    Klenke FM, Wenger DE, Inwards CY et al (2011) Giant cell tumor of bone: risk factors for recurrence. Clin Orthop Relat Res 469:591–599CrossRefPubMedGoogle Scholar
  16. 16.
    Koelsche C, Schrimpf D, Tharun L et al (2017) Histone 3.3 hotspot mutations in conventional osteosarcomas: a comprehensive clinical and molecular characterization of six H3F3A mutated cases. Clin Sarcoma Res 7:9CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lewis PW, Müller MM, Koletsky MS et al (2013) Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340:857–861CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lüke J, von Baer A, Schreiber J et al (2017) H3F3A mutation in giant cell tumour of the bone is detected by immunohistochemistry using a monoclonal antibody against the G34W mutated site of the histone H3.3 variant. Histopathology 71:125–133CrossRefPubMedGoogle Scholar
  19. 19.
    Mak IW, Evaniew N, Popovic S et al (2014) A translational study of the neoplastic cells of giant cell tumor of bone following neoadjuvant denosumab. J Bone Joint Surg Am 96:e127CrossRefPubMedGoogle Scholar
  20. 20.
    Maues De Paula A, Vasiljevic A, Giorgi R et al (2014) A diagnosis of giant cell-rich tumour of bone is supported by p63 immunohistochemistry, when more than 50 % of cells is stained. Virchows Arch 465:487–494CrossRefPubMedGoogle Scholar
  21. 21.
    McGrath PJ (1972) Giant-cell tumour of bone: an analysis of fifty-two cases. J Bone Joint Surg Br 54:216–229CrossRefPubMedGoogle Scholar
  22. 22.
    Muheremu A, Niu X (2014) Pulmonary metastasis of giant cell tumor of bones. World J Surg Oncol 12:261CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Presneau N, Baumhoer D, Behjati S et al (2015) Diagnostic value of H3F3A mutations in giant cell tumour of bone compared to osteoclast-rich mimics. J Pathol Clin Res 1:113–123CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Robinson D, Segal M, Nevo Z (2002) Giant cell tumor of bone. The role of fibroblast growth factor 3 positive mesenchymal stem cells in its pathogenesis. Pathobiology 70:333–342CrossRefPubMedGoogle Scholar
  25. 25.
    Sanerkin NG (1980) Malignancy, aggressiveness, and recurrence in giant cell tumor of bone. Cancer 46:1641–1649CrossRefPubMedGoogle Scholar
  26. 26.
    Shooshtarizadeh T, Rahimi M, Movahedinia S (2016) P63 expression as a biomarker discriminating giant cell tumor of bone from other giant cell-rich bone lesions. Pathol Res Pract 212:876–879CrossRefPubMedGoogle Scholar
  27. 27.
    Werner M (2006) Giant cell tumour of bone: morphological, biological and histogenetical aspects. Int Orthop 30:484–489CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    West RB, Rubin BP, Miller MA et al (2006) A landscape effect in tenosynovial giant-cell tumor from activation of CSF1 expression by a translocation in a minority of tumor cells. Proc Natl Acad Sci USA 103:690–695CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wulling M, Delling G, Kaiser E (2003) The origin of the neoplastic stromal cell in giant cell tumor of bone. Hum Pathol 34:983–993CrossRefPubMedGoogle Scholar
  30. 30.
    Yamagishi T, Kawashima H, Ogose A et al (2016) Receptor-activator of nuclear kappaB ligand expression as a new therapeutic target in primary bone tumors. PLOS ONE 11:e154680CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH 2017

Authors and Affiliations

  • J. Lüke
    • 1
  • M. Hasenfratz
    • 1
  • P. Möller
    • 1
  • T. F. E. Barth
    • 1
  1. 1.Institut für PathologieUniversitätsklinikum UlmUlmDeutschland

Personalised recommendations