Advertisement

Der Pathologe

, Volume 37, Issue 1, pp 52–60 | Cite as

Molekulare Klassifikation des Harnblasenkarzinoms

Mögliche Ähnlichkeit zum Mammakarzinom
  • R. M. Wirtz
  • V. Fritz
  • R. Stöhr
  • A. Hartmann
Schwerpunkt: Uropathologie

Zusammenfassung

Therapeutische Entscheidungen beim Mammakarzinom werden zunehmend subtypspezifisch über Genexpressionstests gesteuert. Für das Harnblasenkarzinom konnten mithilfe genomweiter RNA-Expressionsanalysen sehr ähnliche Subtypen identifiziert werden, die sich wie beim Mammakarzinom auf Basis ihrer Hormonabhängigkeit hinsichtlich Prognose und Ansprechen auf Therapie unterscheiden. Auf DNA-Ebene ergeben sich hingegen deutliche Unterschiede zwischen Harnblasen- und Mammakarzinomen bzgl. Mutationsspektrum und -häufigkeiten in den unterschiedlichen Subtypen. Es ist offen, inwieweit mögliche „Treiber“-Mutationen als neue therapeutische Ziele fungieren können. Demgegenüber deutet die Erkenntnis der deutlichen Hormonabhängigkeit eines Großteils der Harnblasenkarzinome auf mögliche hormonelle und antihormonelle Therapieoptionen hin und erklärt auch epidemiologische Befunde bzgl. geschlechtsspezifischer Unterschiede sowohl bei der Entstehung als auch bzgl. Progression des Harnblasenkarzinoms. Zusammen mit aufkommenden immunmodulatorischen Therapien eröffnen sich so zahlreiche Therapieoptionen, die bei der Behandlung dieser aggressiven Erkrankung neue Hoffnung geben können.

Schlüsselwörter

Genexpressionstests Subtypen Mutationsspektrum Therapieoptionen Immunmodulatorische Therapien 

Molecular classification of bladder cancer

Possible similarities to breast cancer

Abstract

Therapeutic decisions for breast cancer are increasingly becoming based on subtype-specific gene expression tests. For bladder cancer very similar subtypes have been identified by genome-wide mRNA analysis, which as for breast cancer differ with respect to the prognosis and response to therapy on the basis of their hormone dependency. At the DNA level, however, the type of mutations and their frequencies within the subtypes are strikingly different between bladder and breast cancers. It will be interesting to see whether possible driver mutations can serve as therapeutic targets in both indications. In contrast, the apparent hormone dependency of a substantial number of bladder carcinomas suggests that hormonal and anti-hormonal treatment can be valid therapy options similar to breast cancer. Moreover, gender-specific differences with respect to the incidence and aggressiveness of male compared to female bladder cancers can be explained by hormonal effects. Together with forthcoming immunomodulatory therapies these multiple therapy options raise and give new hope to efficiently combat this aggressive disease.

Keywords

Gene expression tests Subtypes Mutation spectrum Therapy options Immunomodulatory therapy 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

R. Wirtz weist auf folgende Beziehung hin: Er ist Mitbegründer und Geschäftsführer der Stratifyer Molecular Pathology GmbH. V. Fritz, R. Stöhr und A. Hartmann geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Choi W et al (2014) Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell 25:152–165PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    The Cancer Genome Atlas Research Network (TCGA) (2014) Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507:315–322PubMedCentralCrossRefGoogle Scholar
  3. 3.
    Damrauer JS et al (2014) Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology. Proc Natl Acad Sci U S A 111:3110–3115PubMedCentralCrossRefPubMedGoogle Scholar
  4. 4.
    Davis D et al (2011) Lower risk in parous women suggests hormonal factors important in bladder cancer etiology. Cancer Epidemiol Biomarkers Prev 20:1156–1170CrossRefGoogle Scholar
  5. 5.
    Huang AT et al (2009) Bladder cancer and reproductive factors among women in spain. Cancer Causes Control 20:1907–1913PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Burger M et al (2013) Epidemiology and risk factors for urothelial bladder cancer. Eur Urol 63:234–241CrossRefPubMedGoogle Scholar
  7. 7.
    Babjuk M et al (2011) EAU guidelines on non– muscle-invasive urothelial carcinoma of the bladder, the 2011 update. Eur Urol 59:997–1008CrossRefPubMedGoogle Scholar
  8. 8.
    Stenzl A et al (2011) Treatment of muscle-invasive and metastatic bladder cancer: update of the EAU guidelines. Eur Urol 59:1009–1018CrossRefPubMedGoogle Scholar
  9. 9.
    Knowles MA, Hurst CD (2015) Molecular biology of bladder cancer: new insights into pathogenesis and clinical diversity. Nat Rev Cancer 15:25–41CrossRefPubMedGoogle Scholar
  10. 10.
    Perou CM et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752CrossRefPubMedGoogle Scholar
  11. 11.
    Sorlie T et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98:10869–10874PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Sorlie T (2004) Molecular portraits of breast cancer: tumor subtypes as distinct disease entities. Eur J Cancer 40:2667–2675CrossRefPubMedGoogle Scholar
  13. 13.
    Patschan O et al (2015) A Molecular Pathologic Framework for Risk Stratification of Stage T1 Urothelial Carcinoma. Eur Urol 68(5):824–832. doi:10.1016/j.eururo.2015.02.021CrossRefPubMedGoogle Scholar
  14. 14.
    The Cancer Genome Atlas Research Network (TCGA) (2012) Comprehensive molecular portraits of human breast tumors. Nature 490:61–70CrossRefGoogle Scholar
  15. 15.
    Loi S et al (2010) PIK3CA mutations associated with gene signature of low mTORC1 signaling and better outcomes in estrogen receptor-positive breast cancer. Proc Natl Acad Sci U S A 107:10208–10213PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Loi S et al (2013) PIK3CA genotype and a PIK3CA mutation-related gene signature and response to everolimus and letrozole in estrogen receptor positive breast cancer. PLoS One 8(1):e53292PubMedCentralCrossRefPubMedGoogle Scholar
  17. 17.
    Slamon DJ et al (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neuoncogene. Science 235:177–182CrossRefPubMedGoogle Scholar
  18. 18.
    Sotiriou C et al (2009) Gene expresson signatures in breast cancer. N Engl J Med 360:790–800CrossRefPubMedGoogle Scholar
  19. 19.
    Denkert C et al (2013) RNA-based determination of ESR1 and HER2 expression and response to neoadjuvant chemotherapy. Ann Oncol 24:632–639CrossRefPubMedGoogle Scholar
  20. 20.
    Denkert C et al (2013) HER2 and ESR1 mRNA expression levels and response to neoadjuvant trastuzumab plus chemotherapy in patients with primary breast cancer. Breast Cancer Res 15:R11PubMedCentralCrossRefPubMedGoogle Scholar
  21. 21.
    Goldhirsch A et al (2011) Strategies for subtypes – dealing with the diversity of breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol 22:1736–1747PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Bertz S et al (2014) Combination of CK20 and Ki-67 Immunostaining Analysis Predicts Recurrence, Progression, and Cancer-Specific Survival in pT1 Urothelial Bladder Cancer. Eur Urol 65:218–226CrossRefPubMedGoogle Scholar
  23. 23.
    Van Rhijn BW et al (2012) The FGFR3 mutation is related to favorable pT1 bladder cancer. J Urol 187:310–314PubMedGoogle Scholar
  24. 24.
    Shen SS et al (2006) Expression of estrogen receptors-alpha and -beta in bladder cancer cell lines and human bladder tumor tissue. Cancer 106:2610–2616CrossRefPubMedGoogle Scholar
  25. 25.
    George SK et al (2013) Chemoprevention of BBN-Induced Bladder Carcinogenesis by the Selective Estrogen Receptor Modulator Tamoxifen. Transl Oncol 6:244–255PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Schmidt M et al (2008) The humoral immune system has a key prognostic impact in node-negative breast cancer. Cancer Res 68(13):5405–5413CrossRefPubMedGoogle Scholar
  27. 27.
    Schmidt M et al (2009) Coordinates in the universe of node-negative breast cancer revisited. Cancer Res 69:2695–2698CrossRefPubMedGoogle Scholar
  28. 28.
    Denkert C et al (2010) Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J Clin Oncol 28:105–113CrossRefPubMedGoogle Scholar
  29. 29.
    Powles T, Eder JP, Fine GD et al (2014) MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515:558–562CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • R. M. Wirtz
    • 1
    • 3
  • V. Fritz
    • 2
  • R. Stöhr
    • 2
  • A. Hartmann
    • 2
    • 3
  1. 1.Institut für PathologieSt. Elisabeth Lehrkrankenhaus, Köln, STRATIFYER Molecular Pathology GmbHKölnDeutschland
  2. 2.Pathologisches InstitutUniversität Erlangen-NürnbergErlangenDeutschland
  3. 3.BRIDGE e. V. KonsortiumMannheimDeutschland

Personalised recommendations