Der Pathologe

, Volume 34, Issue 4, pp 310–317

Molekularpathologische Diagnostik in der Zytopathologie des nichtkleinzelligen Lungenkarzinoms

Standardisierung der Materialprozessierung
  • A. Warth
  • L. Bubendorf
  • S. Gütz
  • A. Morresi-Hauf
  • M. Hummel
  • K. Junker
  • U. Lehmann
  • I. Petersen
  • P.A. Schnabel
Übersichten

Zusammenfassung

Hintergrund

Personalisierte Therapien werden zunehmend zum Standard in der Behandlung des nichtkleinzelligen Lungenkarzinoms. Der Nachweis entsprechender genetischer Alterationen erfordert eine hohe Kompetenz im Umgang mit unterschiedlichen Zell- und Gewebeproben. Eine große Herausforderung stellt die meist geringe Menge an verfügbarem Untersuchungsmaterial dar. Bis dato gibt es allerdings nur wenige standardisierte und evidenzbasierte Empfehlungen bezüglich der Materialprozessierung, der Analyse und der Befundung.

Material und Methode

Um eine Basis für standardisierte prädiktive Analysen in der Zytopathologie zu schaffen, wurden unterschiedliche Vorgehensweisen in der Materialprozessierung und der prädiktiven Diagnostik diskutiert, bewertet sowie Konzepte und Strategien für eine qualitätsoptimierte Diagnostik erarbeitet.

Ergebnisse und Diskussion

Die prädiktive Diagnostik in der Zytologie ist grundsätzlich an Ausstrich-, Zytozentrifugenpräparaten und Zellblöcken möglich. Die zytologischen Proben sollten mit möglichst minimalem Zellverbrauch aufgearbeitet werden, um weiteres Material für prädiktive Analysen zu erhalten. An zytologischem Material sind alle prädiktiven Analysen zuverlässig durchführbar, sodass nicht auf histologisches Material zurückgegriffen werden muss. Zytopathologie ist unter diesen Voraussetzungen ein wichtiger Partner in der multidisziplinären und zunehmend komplexer werdenden Betreuung von Lungenkrebspatienten.

Schlüsselwörter

Zytologie Molekularpathologie Lungenkrebs EGFR Personalisierte Medizin 

Molecular pathological diagnosis in cytopathology of non-small-cell lung cancer

Standardization of specimen processing

Abstract

Background

Personalized medicine is becoming standard for the treatment of non-small-cell lung cancer. For example, patients with activating EGFR mutations or EML4-ALK translocations largely benefit from targeted therapies with tyrosine kinase inhibitors with better response rates and progression-free survival compared to standard chemotherapy regimens. However, the application of the respective molecular biomarker analyses requires great expertise in the handling of different cell and tissue specimens. A major challenge for reliable analyses is the usually low amount of tumor material. There are currently relatively few standardized and evidence-based guidelines for the processing and analysis of respective specimens as well as for interpretation of the test results.

Materials and methods

To establish a basis for standardized predictive cytopathological analyses, different material processing approaches and molecular pathological tests are discussed, and novel concepts and strategies are lined out in order to improve the quality and reliability of the respective diagnostic procedures.

Results and discussion

Predictive analyses of cytological specimens can be reliably performed using smears, cytospins or cell blocks; there is no need for histological specimens. The diagnostic work-up of cytological probes should be performed as carefully as possible in order to save further tumor material for subsequent predictive analyses. With standardized and reliable procedures at hand cytopathology is an important contribution to the multidisciplinary, complex care, and treatment of lung cancer patients.

Keywords

Cytology Pathology, molecular Lung cancer EGFR Personalized medicine 

Literatur

  1. 1.
    Bruno P, Mariotta S, Ricci A et al (2011) Reliability of direct sequencing of EGFR: comparison between cytological and histological samples from the same patient. Anticancer Res 31:4207–4210PubMedGoogle Scholar
  2. 2.
    Bubendorf L, Feicher G, Obermann P et al (2011) Zytopathologie, Pathologie, Bd 9. Springer, BerlinGoogle Scholar
  3. 3.
    Chowdhuri SR, Xi L, Pham TH et al (2012) EGFR and KRAS mutation analysis in cytologic samples of lung adenocarcinoma enabled by laser capture microdissection. Mod Pathol 25:548–555CrossRefPubMedGoogle Scholar
  4. 4.
    Do H, Dobrovic A (2009) Limited copy number-high resolution melting (LCN-HRM) enables the detection and identification by sequencing of low level mutations in cancer biopsies. Mol Cancer 8:82CrossRefPubMedGoogle Scholar
  5. 5.
    Fassina A, Gazziero A, Zardo D et al (2009) Detection of EGFR and KRAS mutations on trans-thoracic needle aspiration of lung nodules by high resolution melting analysis. J Clin Pathol 62:1096–1102CrossRefPubMedGoogle Scholar
  6. 6.
    Jemal A, Bray F, Center MM et al (2011) Global cancer statistics. CA: Cancer J Clin 61:69–90Google Scholar
  7. 7.
    Kellermann L, Ukena D (2012) Disparities In Access To EGFR-Mutation Testing In Patients With Advanced NSCLC In Germany 2011. Poster Session II, ISPOR 15th Annual European Congress, 3–7 November, Berlin, GermanyGoogle Scholar
  8. 8.
    Kwak EL, Bang YJ, Camidge DR et al (2010) Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 363:1693–1703CrossRefPubMedGoogle Scholar
  9. 9.
    Little AG, Gay EG, Gaspar LE et al (2007) National survey of non-small cell lung cancer in the United States: epidemiology, pathology and patterns of care. Lung Cancer 57:253–260CrossRefPubMedGoogle Scholar
  10. 10.
    Marchetti A, Martella C, Felicioni L et al (2005) EGFR mutations in non-small-cell lung cancer: analysis of a large series of cases and development of a rapid and sensitive method for diagnostic screening with potential implications on pharmacologic treatment. J Clin Oncol 23:857–865CrossRefPubMedGoogle Scholar
  11. 11.
    Mok TS (2011) Personalized medicine in lung cancer: what we need to know. Nat Rev Clin Oncol 8:661–668CrossRefPubMedGoogle Scholar
  12. 12.
    Mok TS, Wu YL, Thongprasert S et al (2009) Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 361:947–957CrossRefPubMedGoogle Scholar
  13. 13.
    Molina-Vila MA, Bertran-Alamillo J, Reguart N et al (2008) A sensitive method for detecting EGFR mutations in non-small cell lung cancer samples with few tumor cells. J Thorac Oncol 3:1224–1235CrossRefPubMedGoogle Scholar
  14. 14.
    Morinaga R, Okamoto I, Fujita Y et al (2008) Association of epidermal growth factor receptor (EGFR) gene mutations with EGFR amplification in advanced non-small cell lung cancer. Cancer Sci 99:2455–2460CrossRefPubMedGoogle Scholar
  15. 15.
    Pao W, Ladanyi M (2007) Epidermal growth factor receptor mutation testing in lung cancer: searching for the ideal method. Clin Cancer Res 13:4954–4955CrossRefPubMedGoogle Scholar
  16. 16.
    Penzel R, Schirmacher P, Warth A (2012) A novel EML4-ALK variant: exon 6 of EML4 fused to exon 19 of ALK. J Thorac Oncol 7:1198–1199CrossRefPubMedGoogle Scholar
  17. 17.
    Penzel R, Sers C, Chen Y et al (2011) EGFR mutation detection in NSCLC – assessment of diagnostic application and recommendations of the German Panel for Mutation Testing in NSCLC. Virchows Arch 458:95–98CrossRefPubMedGoogle Scholar
  18. 18.
    Petersen I, Schnabel PA (2011) What’s new in lung pathology: minutes from the Pulmonary Pathology Working Group of the German Society of Pathology. Pathologe 32(Suppl 2):351–357CrossRefPubMedGoogle Scholar
  19. 19.
    Pirker R, Herth FJ, Kerr KM et al (2010) Consensus for EGFR mutation testing in non-small cell lung cancer: results from a European workshop. J Thorac Oncol 5:1706–1713CrossRefPubMedGoogle Scholar
  20. 20.
    Rekhtman N, Brandt SM, Sigel CS et al (2011) Suitability of thoracic cytology for new therapeutic paradigms in non-small cell lung carcinoma: high accuracy of tumor subtyping and feasibility of EGFR and KRAS molecular testing. J Thorac Oncol 6:451–458CrossRefPubMedGoogle Scholar
  21. 21.
    Riaz SP, Luchtenborg M, Jack RH et al (2012) Variation in surgical resection for lung cancer in relation to survival: population-based study in England 2004–2006. Eur J Cancer 48:54–60CrossRefPubMedGoogle Scholar
  22. 22.
    Rosell R, Carcereny E, Gervais R et al (2012) Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol 13:239–246CrossRefPubMedGoogle Scholar
  23. 23.
    Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467CrossRefPubMedGoogle Scholar
  24. 24.
    Savic S, Bihl MP, Bubendorf L (2012) Non-small cell lung cancer: subtyping and predictive molecular marker investigations in cytology. Pathologe 33:301–307CrossRefPubMedGoogle Scholar
  25. 25.
    Savic S, Tapia C, Grilli B et al (2008) Comprehensive epidermal growth factor receptor gene analysis from cytological specimens of non-small-cell lung cancers. Br J Cancer 98:154–160CrossRefPubMedGoogle Scholar
  26. 26.
    Soda M, Choi YL, Enomoto M et al (2007) Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448:561–566CrossRefPubMedGoogle Scholar
  27. 27.
    Solomon SB, Zakowski MF, Pao W et al (2010) Core needle lung biopsy specimens: adequacy for EGFR and KRAS mutational analysis. AJR Am J Roentgenol 194:266–269CrossRefPubMedGoogle Scholar
  28. 28.
    Tapia C, Savic S, Bihl M et al (2009) EGFR mutation analysis in non-small-cell lung cancer: experience from routine diagnostics. Pathologe 30:384–392CrossRefPubMedGoogle Scholar
  29. 29.
    Thunnissen E, Kerr KM, Herth FJ et al (2012) The challenge of NSCLC diagnosis and predictive analysis on small samples. Practical approach of a working group. Lung Cancer 76:1–18CrossRefPubMedGoogle Scholar
  30. 30.
    Travis WD, Brambilla E, Noguchi M et al (2011) International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol 6:244–285CrossRefPubMedGoogle Scholar
  31. 31.
    Warth A, Muley T, Herpel E et al (2012) Large-scale comparative analyses of immunomarkers for diagnostic subtyping of non-small-cell lung cancer biopsies. Histopathology 61:1017–1025CrossRefPubMedGoogle Scholar
  32. 32.
    Warth A, Muley T, Meister M et al (2012) The novel histologic International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society classification system of lung adenocarcinoma is a stage-independent predictor of survival. J Clin Oncol 30:1438–1446CrossRefPubMedGoogle Scholar
  33. 33.
    Warth A, Penzel R, Brandt R et al (2012) Optimized algorithm for Sanger sequencing-based EGFR mutation analyses in NSCLC biopsies. Virchows Arch 460:407–414CrossRefPubMedGoogle Scholar
  34. 34.
    Weihmann J, Weichert C, Petersen I et al (2012) Evaluation of a cell block method in cytological diagnostics. Pathologe 33:553–559CrossRefPubMedGoogle Scholar
  35. 35.
    Zlobec I, Raineri I, Schneider S et al (2010) Assessment of mean EGFR gene copy number is a highly reproducible method for evaluating FISH in histological and cytological cancer specimens. Lung Cancer 68:192–197CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • A. Warth
    • 1
    • 10
  • L. Bubendorf
    • 2
    • 10
  • S. Gütz
    • 3
  • A. Morresi-Hauf
    • 4
    • 10
  • M. Hummel
    • 5
  • K. Junker
    • 6
    • 10
  • U. Lehmann
    • 7
  • I. Petersen
    • 8
    • 10
  • P.A. Schnabel
    • 9
    • 10
  1. 1.Institut für PathologieUniversität HeidelbergHeidelbergDeutschland
  2. 2.Institut für PathologieUniversität BaselBaselDeutschland
  3. 3.Robert-Koch KlinikKlinikum St. Georg LeipzigLeipzigDeutschland
  4. 4.Institut für PathologieAsklepios Fachkliniken München-GautingMünchenDeutschland
  5. 5.Institut für PathologieCharitéBerlinDeutschland
  6. 6.Zentrum für PathologieKlinikum Bremen MitteBremenDeutschland
  7. 7.Institut für PathologieMedizinische Hochschule HannoverHannoverDeutschland
  8. 8.Institut für PathologieUniversität JenaJenaDeutschland
  9. 9.Sektion Pneumopathologie, Institut für PathologieUniversität HeidelbergHeidelbergDeutschland
  10. 10.Arbeitsgemeinschaft Pneumopathologie der Deutschen Gesellschaft für Pathologie--

Personalised recommendations