Der Pathologe

, Volume 34, Issue 1, pp 16–24 | Cite as

Molekularpathologie der Lunge

Perspektiven durch neue Sequenzierformen
  • C. Vollbrecht
  • K. König
  • L. Heukamp
  • R. Büttner
  • M. Odenthal
Schwerpunkt

Zusammenfassung

Lungenkarzinome gehören zu den häufigsten bösartigen Tumorerkrankungen der westlichen Welt. Sie sind mit einem weiten Spektrum von Mutationen assoziiert, die vor allem Gene therapierelevanter Signalwege betreffen. Aufgrund der wachsenden Zahl an genetischen Loci, die für eine verbesserte Einordnung der Lungenkarzinome untersucht werden müssen, sind neue, hocheffiziente Ansätze einer weiter reichenden Mutationsanalyse gefragt. Umfangreiche Mutationsanalysen progressions- und therapierelevanter Gene können durch die neuen Sequenzierformen sog. „Next-generation-sequencing“ (NGS)-Ansätze angegangen werden, da diese aufgrund besonders hoher Sequenzierkapazitäten die Möglichkeit bieten, eine Vielzahl von Genen hochauflösend zu untersuchen.

Für molekularpathologische Untersuchungen stehen zurzeit im Wesentlichen drei Plattformen zur Verfügung, die die parallele Sequenzierung von multiplen Genen und Proben in einem Sequenziergang ermöglichen: die 454- oder Pyrosequenzierung, die synthesebasierte Sequenzierung und die Halbleitersequenzierung, in der die Protonenabgabe beim Nukelotideinbau gemessen wird. Das Prinzip, dass nach klonaler Expansion einzelner DNA-Moleküle sequenziert wird, erlaubt nicht nur Angaben zur Allelfrequenz und zur Mutationsrate, sondern bietet auch sehr hohe Empfindlichkeiten in der Detektion von niedrigfrequenten Varianten.

Schlüsselwörter

Parallelsequenzierung Pyrosequenzierung Halbleitersequenzierung Multiplexanalyse Personalisierte Onkologie 

Molecular pathology of the lungs

New perspectives by next generation sequencing

Abstract

Lung cancer is one of the most frequent malignancies in the western world. Its frequent association with a wide spectrum of mutations in genes encoding various signal transducers that are often linked to therapy response, emphasizes the obvious need for improved, fast and highly efficient approaches in molecular pathology. Comprehensive analyses of the mutation status of progression and therapy relevant genes can be performed by the novel sequencing forms named next generation sequencing (NGS) providing extremely high capacities for ultra-deep sequence analyses.

The 454 pyrosequencing method, the sequencing by synthesis and the semiconductor sequencing platform are now available for parallel sequencing approaches of multitudinous target genes linked to multiple tumor DNA applications. The “one molecule, one clone, one read” principle by the NGS approaches supplies not only information on allele frequencies and mutation rates but also has the advantage of a very sensitive detection of low frequency variants.

Keywords

Parallel sequencing Pyrosequencing Semiconductor sequencing Cancer panel Personalized oncology 

Notes

Interessenkonflikt

Die korrespondierende Autorin weist auf folgende Beziehungen hin: Studien zur EGFR-Analyse beim nichtkleinzelligen Lungenkarzinom (NSCLC) von Margarete Odenthal und Reinhard Büttner wurden von der Firma Roche unterstützt. Margarete Odenthal und Reinhard Büttner erhielten ebenfalls Reisemittel von der Firma Roche, Novartis, AstraZeneca, Merck-Serono, Lilly-Pharma, Böhringer Ingelheim für den Besuch internationaler Konferenzen (European Congress of Pathology, ECP; Congress of the United States and Canadian Academy of Pathology, USCAP) zur Berichterstattung über ausgewählte Konferenzbeiträge. Claudia Vollbrecht, Katharina König und Lukas Heukamp geben an, dass kein Interessenkonflikt besteht.

Supplementary material

292_2012_1704_MO1_ESM.pdf (1.5 mb)
Tabelle 1: Tumor- und therapierelevante genetische Veränderungen im Lungenkarzinom (PDF 1,6MB)

Literatur

  1. 1.
    Alberg AJ, Ford JG, Samet JM (2007) Epidemiology of lung cancer: ACCP evidence-based clinical practice guidelines (2nd edition). Chest 132:29S–55SPubMedCrossRefGoogle Scholar
  2. 2.
    Cheng L, Alexander RE, Maclennan GT et al (2012) Molecular pathology of lung cancer: key to personalized medicine Modern Pathol 25:347–369Google Scholar
  3. 3.
    Cronin M, Ross JS (2011) Comprehensive next-generation cancer genome sequencing in the era of targeted therapy and personalized oncology. Biomark Med 5:293–305PubMedCrossRefGoogle Scholar
  4. 4.
    Duncavage EJ, Magrini V, Becker N et al (2011) Hybrid capture and next-generation sequencing identify viral integration sites from formalin-fixed, paraffin-embedded tissue. J Mol Diagn 13:325–333PubMedCrossRefGoogle Scholar
  5. 5.
    Eberhard DA, Johnson BE, Amler LC et al (2005) Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J Clin Oncol 23:5900–5909PubMedCrossRefGoogle Scholar
  6. 6.
    Horn L, Pao W (2009) EML4-ALK: honing in on a new target in non-small-cell lung cancer. J Clin Oncol 27:4232–4235PubMedCrossRefGoogle Scholar
  7. 7.
    Hynes NE, Lane HA (2005) ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 5:341–354PubMedCrossRefGoogle Scholar
  8. 8.
    Ji H, Zhao X, Yuza Y et al (2006) Epidermal growth factor receptor variant III mutations in lung tumorigenesis and sensitivity to tyrosine kinase inhibitors. Proc Natl Acad Sci U S A 103:7817–7822PubMedCrossRefGoogle Scholar
  9. 9.
    Loman NJ, Misra RV, Dallman TJ et al (2012) Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol 30:434–439PubMedCrossRefGoogle Scholar
  10. 10.
    Maheswaran S, Sequist LV, Nagrath S et al (2008) Detection of mutations in EGFR in circulating lung-cancer cells. N Eng J Med 359:366–377CrossRefGoogle Scholar
  11. 11.
    Margulies M, Egholm M, Altman WE et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380PubMedGoogle Scholar
  12. 12.
    Nakamura K, Oshima T, Morimoto T et al (2011) Sequence-specific error profile of Illumina sequencers. Nucleic Acids Res 39:e90PubMedCrossRefGoogle Scholar
  13. 13.
    Narayan A, Carriero NJ, Gettinger SN et al (2012) Ultrasensitive measurement of hotspot mutations in tumor DNA in blood using error-suppressed multiplexed deep sequencing. Cancer Res 72:3492–3498PubMedCrossRefGoogle Scholar
  14. 14.
    Paik PK, Arcila ME, Fara M et al (2011) Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations. J Clin Oncol 29:2046–2051PubMedCrossRefGoogle Scholar
  15. 15.
    Quail MA, Smith M, Coupland P et al (2012) A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 13:341PubMedCrossRefGoogle Scholar
  16. 16.
    Rosell R, Moran T, Queralt C et al (2009) Screening for epidermal growth factor receptor mutations in lung cancer. N Eng J Med 361:958–967CrossRefGoogle Scholar
  17. 17.
    Rothberg JM, Hinz W, Rearick TM et al (2011) An integrated semiconductor device enabling non-optical genome sequencing. Nature 475:348–352PubMedCrossRefGoogle Scholar
  18. 18.
    Scagliotti GV, Selvaggi G, Novello S et al (2004) The biology of epidermal growth factor receptor in lung cancer. Clin Cancer Res 10:4227s–4232sPubMedCrossRefGoogle Scholar
  19. 19.
    Sharma SV, Bell DW, Settleman J et al (2007) Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer 7:169–181PubMedCrossRefGoogle Scholar
  20. 20.
    Spencer DH, Abel HJ, Lockwood CM et al (2012) Detection of FLT3 internal tandem duplication in targeted, short-read-length, next-generation sequencing data. J Mol Diagn 15:81–93.PubMedCrossRefGoogle Scholar
  21. 21.
    Wu K, House L, Liu W et al (2012) Personalized targeted therapy for lung cancer. Int J Mol Sci 13:11471–11496PubMedCrossRefGoogle Scholar
  22. 22.
    Cabezon-Gutierrez L, Khosravi-Shahi P, Diaz-Munoz-De-La-Espada VM et al (2012) ALK-mutated non-small-cell lung cancer: a new strategy for cancer treatment. Lung 190:381–388PubMedCrossRefGoogle Scholar
  23. 23.
    Cheng H, Xu X, Costa DB et al (2010) Molecular testing in lung cancer: the time is now. Curr Oncol Rep 12:335–348PubMedCrossRefGoogle Scholar
  24. 24.
    De Oliveira Duarte Achcar R, Nikiforova MN, Yousem SA (2009) Micropapillary lung adenocarcinoma: EGFR, K-ras, and BRAF mutational profile. Am J Clin Pathol 131:694–700CrossRefGoogle Scholar
  25. 25.
    Dutt A, Ramos AH, Hammerman PS et al (2011) Inhibitor-sensitive FGFR1 amplification in human non-small cell lung cancer. PloS One 6:e20351PubMedCrossRefGoogle Scholar
  26. 26.
    Ekman S, Wynes MW, Hirsch FR (2012) The mTOR pathway in lung cancer and implications for therapy and biomarker analysis. J Thorac Oncol 7:947–953PubMedCrossRefGoogle Scholar
  27. 27.
    Ellis PM, Blais N, Soulieres D et al (2011) A systematic review and Canadian consensus recommendations on the use of biomarkers in the treatment of non-small cell lung cancer. J Thorac Oncol 6:1379–1391PubMedCrossRefGoogle Scholar
  28. 28.
    Gazdar AF (2009) Personalized medicine and inhibition of EGFR signaling in lung cancer. N Eng J Med 361:1018–1020CrossRefGoogle Scholar
  29. 29.
    Heist RS, Sequist LV, Engelman JA (2012) Genetic changes in squamous cell lung cancer: a review. J Thorac Oncol 7:924–933PubMedCrossRefGoogle Scholar
  30. 30.
    Maira SM, Pecchi S, Huang A et al (2012) Identification and characterization of NVP-BKM120, an orally available pan-class I PI3-kinase inhibitor. Mol Cancer Ther 11:317–328PubMedCrossRefGoogle Scholar
  31. 31.
    Paik PK, Arcila ME, Fara M et al (2011) Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations. J Clin Oncol 29:2046–2051PubMedCrossRefGoogle Scholar
  32. 32.
    Sequist LV, Von Pawel J, Garmey EG et al (2011) Randomized phase II study of erlotinib plus tivantinib versus erlotinib plus placebo in previously treated non-small-cell lung cancer. J Clin Oncol 29:3307–3315PubMedCrossRefGoogle Scholar
  33. 33.
    Suda K, Tomizawa K, Mitsudomi T (2010) Biological and clinical significance of KRAS mutations in lung cancer: an oncogenic driver that contrasts with EGFR mutation. Cancer Metastasis Rev 29:49–60PubMedCrossRefGoogle Scholar
  34. 34.
    Toschi L, Cappuzzo F (2010) Impact of biomarkers on non-small cell lung cancer treatment. Target Oncol 5:5–17PubMedCrossRefGoogle Scholar
  35. 35.
    Wu K, House L, Liu W et al (2012) Personalized targeted therapy for lung cancer. Int J Mol Sci 13:11471–11496PubMedCrossRefGoogle Scholar
  36. 36.
    Zito CR, Jilaveanu LB, Anagnostou V et al (2012) Multi-level targeting of the phosphatidylinositol-3-kinase pathway in non-small cell lung cancer cells. PloS One 7:e31331PubMedCrossRefGoogle Scholar
  37. 37.
    Zou ZQ, Zhang LN, Wang F et al (2012) The novel dual PI3K/mTOR inhibitor GDC-0941 synergizes with the MEK inhibitor U0126 in non-small cell lung cancer cells. Mol Med Reports 5:503–508Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • C. Vollbrecht
    • 1
  • K. König
    • 1
  • L. Heukamp
    • 1
  • R. Büttner
    • 1
  • M. Odenthal
    • 1
  1. 1.Institut für PathologieUniversitätsklinik zu KölnKölnDeutschland

Personalised recommendations