Der Pathologe

, Volume 33, Issue 6, pp 490–495 | Cite as

Knochenmarkhistologie aus klinischer Sicht

Schwerpunkt
  • 469 Downloads

Zusammenfassung

Die Diagnose hämatologischer Erkrankungen stützt sich im klinischen Alltag auf eine aussagekräftige Knochenmarkdiagnostik. Neben den klassischen Verfahren der zytologischen Beurteilung des Knochenmarkaspirats und der histologischen Begutachtung der Knochenmarkbiopsie haben in den letzten Jahren zunehmend auch modernere Verfahren, wie Immunhistochemie, Zytogenetik und molekulare Diagnostik, Einzug in die pathologischen Labors gehalten. Immer weitgehender werden die molekularen Grundlagen hämatologischer Neoplasien identifiziert und bieten nicht nur neue diagnostische, sondern auch zunehmend klinische Anwendungen. Rekurrente genetische Veränderungen sind bei vielen Erkrankungen eng mit der individuellen Prognose assoziiert und finden Eingang in die individuelle Therapieplanung. Das Verständnis deregulierter Pathways ermöglicht in einigen Fällen eine zielgerichtete Therapie. Die Übersichtsarbeit stellt den Stellenwert der Knochenmarkhistologie im klinischen Alltag dar und geht auf neue Möglichkeiten in der Diagnostik hämatologischer Erkrankungen ein.

Schlüsselwörter

Anämie Zytogenetik Malignes Lymphom Leukämie Multiples Myelom 

Bone marrow histology from the clinical point of view

Abstract

Bone marrow diagnostics is an essential tool in routine hematological clinical practice. Not only conventional cytological and histological approaches but also more modern techniques, such as immunohistochemistry, cytogenetics and molecular diagnostics are used. The molecular basis of more and more hematological disorders is being discovered and makes its way not only into routine diagnostics but also into daily clinical practice. Recurrent genomic aberrations associated with the individual patient prognosis are well characterized and are being applied in differential therapeutic decisions. In addition, understanding deregulated biochemical pathways have led to the development of targeted therapeutic approaches. This review outlines the value of bone marrow diagnostics in hematological diseases with a focus on the currently emerging molecular diagnostic possibilities.

Keywords

Anemia Cytogenetics Malignant lymphoma Acute leukaemia Multiple myeloma 

Notes

Interessenkonflikt

Der korrespondierende Autor gibt für sich und seinen Koautor an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Foucar K (2001) Bone marrow pathology, 2nd edn. American Society Clinical Pathology Google Scholar
  2. 2.
    Juneja SK, Wolf MM, Cooper IA (1990) Value of bilateral bone marrow biopsy specimens in non-Hodgkin’s lymphoma. J Clin Pathol 43:630–632PubMedCrossRefGoogle Scholar
  3. 3.
    Vardiman JW, Thiele J, Arber DA et al (2009) The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 114:937–951PubMedCrossRefGoogle Scholar
  4. 4.
    Jerez A, Gondek LP, Jankowska AM et al (2012) Topography, clinical, and genomic correlates of 5q myeloid malignancies revisited. J Clin Oncol 30:1343–1349PubMedCrossRefGoogle Scholar
  5. 5.
    Jones LK, Saha V (2005) Philadelphia positive acute lymphoblastic leukaemia of childhood. Br J Haematol 130:489–500PubMedCrossRefGoogle Scholar
  6. 6.
    Hallek M, Cheson BD, Catovsky D et al (2008) Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood 111:5446–5456PubMedCrossRefGoogle Scholar
  7. 7.
    Döhner H, Stilgenbauer S, Benner A et al (2000) Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 343:1910–1916PubMedCrossRefGoogle Scholar
  8. 8.
    Stilgenbauer S, Döhner H (2002) Campath-1H-induced complete remission of chronic lymphocytic leukemia despite p53 gene mutation and resistance to chemotherapy. N Engl J Med 347(6):452–453PubMedCrossRefGoogle Scholar
  9. 9.
    Damle RN, Wasil T, Fais F et al (1999) Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 94:1840–1847PubMedGoogle Scholar
  10. 10.
    Hamblin TJ, Davis Z, Gardiner A et al (1999) Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 94:1848–1854PubMedGoogle Scholar
  11. 11.
    Krober A, Seiler T, Benner A et al (2002) V(H) mutation status, CD38 expression level, genomic aberrations, and survival in chronic lymphocytic leukemia. Blood 100:1410–1416PubMedGoogle Scholar
  12. 12.
    Cheson BD, Pfistner B, Juweid ME et al (2007) Revised response criteria for malignant lymphoma. J Clin Oncol 25:579–586PubMedCrossRefGoogle Scholar
  13. 13.
    Swerdlow SS (2008) WHO classification of tumours of haematopoietic and lymphoid tissues, 4th edn. International Agency for Research on CancerGoogle Scholar
  14. 14.
    Shtivelman E, Lifshitz B, Gale RP, Canaani E (1985) Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature 315:550–554PubMedCrossRefGoogle Scholar
  15. 15.
    Scott LM, Tong W, Levine RL et al (2007) JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 356:459–468PubMedCrossRefGoogle Scholar
  16. 16.
    Kralovics R (2008) Genetic complexity of myeloproliferative neoplasms. Leukemia 22:1841–1848PubMedCrossRefGoogle Scholar
  17. 17.
    Tefferi A (2008) JAK and MPL mutations in myeloid malignancies. Leuk Lymphoma 49:388–397PubMedCrossRefGoogle Scholar
  18. 18.
    Bird J, Behrens J, Westin J et al (2009) UK Myeloma Forum (UKMF) and Nordic Myeloma Study Group (NMSG): guidelines for the investigation of newly detected M-proteins and the management of monoclonal gammopathy of undetermined significance (MGUS). Br J Haematol 147:22–42PubMedCrossRefGoogle Scholar
  19. 19.
    Sungur C, Sungur A, Ruacan S et al (1993) Diagnostic value of bone marrow biopsy in patients with renal disease secondary to familial Mediterranean fever. Kidney Int 44:834–836PubMedCrossRefGoogle Scholar
  20. 20.
    Emmons RV, Reid DM, Cohen RL et al (1996) Human thrombopoietin levels are high when thrombocytopenia is due to megakaryocyte deficiency and low when due to increased platelet destruction. Blood 87:4068–4071PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Medizinische Klinik und Poliklinik IIIKlinikum der Universität München GroßhadernMünchenDeutschland

Personalised recommendations