Der Pathologe

, Volume 31, Issue 1, pp 16–21 | Cite as

Pathologische Diagnostik für die individualisierte Therapie des Dickdarmkarzinoms

Schwerpunkt

Zusammenfassung

Die Diagnostik in der Pathologie leistet heute einen wesentlichen Beitrag zur individualisierten Therapie des Dickdarmkarzinoms. Als Standardmethode kann der molekularpathologische Nachweis einer KRAS-Mutation das Nichtansprechen auf die Anti-EGFR-Antikörper-Therapie vorhersagen. Die Erkennung eines Mismatch-Reparatur-Defekts oder der damit verbundenen hochgradigen Mikrosatelliteninstabilität indiziert eine Resistenz gegen die 5-FU-Monotherapie. Zudem zeigen der Nachweis von hochgradiger Mikrosatelliteninstabilität und hiermit assoziierte Subtypen des Dickdarmkarzinoms, wie das medulläre Karzinom, ein niedriges Fernmetastasierungsrisiko und damit eine geringe Notwendigkeit für eine adjuvante Chemotherapie an.

Schlüsselwörter

Dickdarmkarzinom Individualisierte Therapie KRAS Mikrosatelliteninstabilität 

Abkürzungsliste

5-FU

5-Fluorouracil

AKT

„AKR mouse thymoma inducing gene“

AR

Amphiregulin

ARMS

„Amplification refractory mutation system“

ASCO

„American Association of Clinical Oncology“

BAD

„Bcl-2 (B-cell lymphoma) associated death promoter“

BRAF

B-Isoform von Raf („rapidly growing fibrosarcoma“)

CRYSTAL

„Cetuximab combined with Irinotecan in first-line therapy for metastatic colorectal cancer“

cSRC

„Cellular sarcoma inducing gene“

EGFR

„Epidermal growth factor receptor“

EMEA

„European Medicines Agency“

ER

Epiregulin

ERRC-1

„Excission repair cross complementation-1“

FAK

„Focal adhesion kinase“

HIF-1α

„Hypoxia induced factor α“

hMLH

„Human Mut H homologue“

hMSH

„Human Mut S homologue“

HNPCC

Hereditäres nichtpolypöses Kolonkarzinom

hPMS

„Human post-mitotic segregation gene“

KRAS

„Kirsten rat sarcoma“

MEK

„Mitogen activated kinase“

MMRD

„Mismatch repair deficiency“

MSI-H

Hochgradige Mikrosatelliteninstabilität

mTOR

„Mammalian target of rapamycin“

PI3 K

Phosphatidyl-Insositol-3-Kinase

PKC

Proteinkinase C

PLCγ

Phospholipase Cγ

PTEN

„Phosphatase and tension homolog“

QuIP

Qualitätssicherungsinitiative Pathologie

S6 K

S6-Kinase

STAT

„Signal transducer and activator of transcription“

UGT1A1

UDP-Glucuronosyl-Transferase

UICC

„Union Internationale Contre le Cancer“

Pathological diagnosis for individualized therapy of colorectal cancer

Abstract

Pathological diagnosis is essential today for the individualized therapy of colorectal cancer. In the routine analysis of colorectal carcinomas the molecular-pathological detection of a KRAS mutation predicts unresponsiveness to EGFR-targeted antibody therapies. Moreover, the detection of mismatch-repair deficiency or high-degree microsatellite instability indicates unresponsiveness to 5-FU monotherapy. Colorectal carcinomas with high-grade microsatellite instability and their associated morphologic subtypes, such as the medullary carcinoma, exhibit a low risk of distant metastasis and might be considered as carcinomas with low need for adjuvant chemotherapy.

Keywords

Colorectal cancer Individualized therapy KRAS Microsatellite instability 

Notes

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehungen hin: Beide Autoren haben für die Firmen Amgen, Merck-Serono und Roche Beratungstätigkeiten ausgeübt und Honorare für Vorträge erhalten.

Literatur

  1. 1.
    Amado RG, Wolf M, Peeters M et al (2008) Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 26:1626–1634CrossRefPubMedGoogle Scholar
  2. 2.
    Anonymous (2001) Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther 69:89–95CrossRefGoogle Scholar
  3. 3.
    Artale S, Sartore-Bianchi A, Veronese SM et al (2008) Mutations of KRAS and BRAF in primary and matched metastatic sites of colorectal cancer. J Clin Oncol 26:4217–4219CrossRefPubMedGoogle Scholar
  4. 4.
    Benatti P, Gafa R, Barana D et al (2005) Microsatellite instability and colorectal cancer prognosis. Clin Cancer Res 11:8332–8340CrossRefPubMedGoogle Scholar
  5. 5.
    Braun MS, Richman SD, Quirke P et al (2008) Predictive biomarkers of chemotherapy efficacy in colorectal cancer: results from the UK MRC FOCUS trial. J Clin Oncol 26:2690–2698CrossRefPubMedGoogle Scholar
  6. 6.
    Carethers JM, Chauhan DP, Fink D et al (1999) Mismatch repair proficiency and in vitro response to 5-fluorouracil. Gastroenterology 117:123–131CrossRefPubMedGoogle Scholar
  7. 7.
    Ciardiello F, Tortora G (2008) EGFR antagonists in cancer treatment. N Engl J Med 358:1160–1174CrossRefPubMedGoogle Scholar
  8. 8.
    De La Chapelle A (2004) Genetic predisposition to colorectal cancer. Nat Rev Cancer 4:769–780CrossRefGoogle Scholar
  9. 9.
    Des Guetz G, Mariani P, Cucherousset J et al (2007) Microsatellite instability and sensitivitiy to FOLFOX treatment in metastatic colorectal cancer. Anticancer Res 27:2715–2719Google Scholar
  10. 10.
    Des Guetz G, Schischmanoff O, Nicolas P et al (2009) Does microsatellite instability predict the efficacy of adjuvant chemotherapy in colorectal cancer? A systematic review with meta-analysis. Eur J Cancer 45:1890–1896CrossRefGoogle Scholar
  11. 11.
    Deutsche Gesellschaft Für Pathologie http://www.dgp-berlin.deGoogle Scholar
  12. 12.
    Di Nicolantonio F, Martini M, Molinari F et al (2008) Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol 26:5705–5712CrossRefGoogle Scholar
  13. 13.
    European Medicines Agency (Emea) http://www.emea.europa.eu/Google Scholar
  14. 14.
    Frattini M, Saletti P, Romagnani E et al (2007) PTEN loss of expression predicts cetuximab efficacy in metastatic colorectal cancer patients. Br J Cancer 97:1139–1145CrossRefPubMedGoogle Scholar
  15. 15.
    Jacobs B, De Roock W, Piessevaux H et al (2009) Amphiregulin and epiregulin mRNA expression in primary tumors predicts outcome in metastatic colorectal cancer treated with cetuximab. J Clin Oncol 27:5068–5074CrossRefPubMedGoogle Scholar
  16. 16.
    Jessurun J, Romero-Guadarrama M, Manivel JC (1999) Medullary adenocarcinoma of the colon: clinicopathologic study of 11 cases. Hum Pathol 30:843–848CrossRefPubMedGoogle Scholar
  17. 17.
    Jhawer M, Goel S, Wilson AJ et al (2008) PIK3CA mutation/PTEN expression status predicts response of colon cancer cells to the epidermal growth factor receptor inhibitor cetuximab. Cancer Res 68:1953–1961CrossRefPubMedGoogle Scholar
  18. 18.
    Jiricny J (2006) The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol 7:335–346CrossRefPubMedGoogle Scholar
  19. 19.
    Jover R, Zapater P, Castells A et al (2009) The efficacy of adjuvant chemotherapy with 5-fluorouracil in colorectal cancer depends on the mismatch repair status. Eur J Cancer 45:365–373CrossRefPubMedGoogle Scholar
  20. 20.
    Khambata-Ford S, Garrett CR, Meropol NJ et al (2007) Expression of epiregulin and amphiregulin and K-ras mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab. J Clin Oncol 25:3230–3237CrossRefPubMedGoogle Scholar
  21. 21.
    Kim SH, Kwon HC, Oh SY et al (2009) Prognostic value of ERCC1, thymidylate synthase and glutathione S-transferase pi for 5-FU/oxaliplatin chemotherapy in advanced colorectal cancer. Am J Clin Oncol 32:38–43CrossRefPubMedGoogle Scholar
  22. 22.
    Köhne C, Stroiakovski D, Chang-Chien C et al (2009) Predictive biomarkers to improve treatment of metastatic colorectal cancer (mCRC): Outcomes with cetuximab plus FOLFIRI in the CRYSTAL trial. ASCO 2009, Abstract 4058Google Scholar
  23. 23.
    Koopman M, Venderbosch S, Nagtegaal ID et al (2009) A review on the use of molecular markers of cytotoxic therapy for colorectal cancer, what have we learned? Eur J Cancer 45:1935–1949CrossRefPubMedGoogle Scholar
  24. 24.
    Lanza G, Gafa R, Matteuzzi M et al (1999) Medullary-type poorly differentiated adenocarcinoma of the large bowel: a distinct clinicopathologic entity characterized by microsatellite instability and improved survival. J Clin Oncol 17:2429–2438PubMedGoogle Scholar
  25. 25.
    Laurent-Puig P, Lievre A, Blons H (2009) Beyond the KRAS test. Eur J Cancer 45(Suppl 1):398–399CrossRefPubMedGoogle Scholar
  26. 26.
    Lindor NM, Burgart LJ, Leontovich O et al (2002) Immunohistochemistry versus microsatellite instability testing in phenotyping colorectal tumors. J Clin Oncol 20:1043–1048CrossRefPubMedGoogle Scholar
  27. 27.
    Loupakis F, Pollina L, Stasi I et al (2009) PTEN expression and KRAS mutations on primary tumors and metastases in the prediction of benefit from cetuximab plus irinotecan for patients with metastatic colorectal cancer. J Clin Oncol 27:2622–2629CrossRefPubMedGoogle Scholar
  28. 28.
    Malesci A, Laghi L, Bianchi P et al (2007) Reduced likelihood of metastases in patients with microsatellite-unstable colorectal cancer. Clin Cancer Res 13:3831–3839CrossRefPubMedGoogle Scholar
  29. 29.
    Oliveira C, Velho S, Moutinho C et al (2007) KRAS and BRAF oncogenic mutations in MSS colorectal carcinoma progression. Oncogene 26:158–163CrossRefPubMedGoogle Scholar
  30. 30.
    Perrone F, Lampis A, Orsenigo M et al (2009) PI3KCA/PTEN deregulation contributes to impaired responses to cetuximab in metastatic colorectal cancer patients. Ann Oncol 20:84–90CrossRefPubMedGoogle Scholar
  31. 31.
    Prenen H, De Schutter J, Jacobs B et al (2009) PIK3CA mutations are not a major determinant of resistance to the epidermal growth factor receptor inhibitor cetuximab in metastatic colorectal cancer. Clin Cancer Res 15:3184–3188CrossRefPubMedGoogle Scholar
  32. 32.
    Ribic CM, Sargent DJ, Moore MJ et al (2003) Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med 349:247–257CrossRefPubMedGoogle Scholar
  33. 33.
    Ruschoff J, Dietmaier W, Luttges J et al (1997) Poorly differentiated colonic adenocarcinoma, medullary type: clinical, phenotypic and molecular characteristics. Am J Pathol 150:1815–1825PubMedGoogle Scholar
  34. 34.
    Sanger Cancer Centre (Uk) (21.10.2009) http://www.sanger.ac.uk. COSMIC (Catalogue of Somatic Mutations in Cancer)Google Scholar
  35. 35.
    Sartore-Bianchi A, Martini M, Molinari F et al (2009) PIK3CA mutations in colorectal cancer are associated with clinical resistance to EGFR-targeted monoclonal antibodies. Cancer Res 69:1851–1857CrossRefPubMedGoogle Scholar
  36. 36.
    Tol J, Koopman M, Cats A et al (2009) Chemotherapy, bevacizumab and cetuximab in metastatic colorectal cancer. N Engl J Med 360:563–572CrossRefPubMedGoogle Scholar
  37. 37.
    Toyota M, Issa JP (1999) CpG island methylator phenotypes in aging and cancer. Semin Cancer Biol 9:349–357CrossRefPubMedGoogle Scholar
  38. 38.
    Umar A, Risinger JI, Hawk ET et al (2004) Testing guidelines for hereditary non-polyposis colorectal cancer. Nat Rev Cancer 4:153–158PubMedGoogle Scholar
  39. 39.
    Van Cutsem E, Kohne CH, Hitre E et al (2009) Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 360:1408–1417CrossRefGoogle Scholar
  40. 40.
    Walther A, Johnstone E, Swanton C et al (2009) Genetic prognostic and predictive markers in colorectal cancer. Nat Rev Cancer 9:489–499CrossRefPubMedGoogle Scholar
  41. 41.
    Wright CM, Dent OF, Barker M et al (2000) Prognostic significance of extensive microsatellite instability in sporadic clinicopathological stage C colorectal cancer. Br J Surg 87:1197–1202CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2009

Authors and Affiliations

  1. 1.Pathologisches Institut der Ludwig-Maximilians-Universität MünchenMünchenDeutschland

Personalised recommendations