Der Pathologe

, Volume 30, Issue 1, pp 31–35 | Cite as

Mikrokalkdiagnostik an minimal-invasiven Biopsien im Mammographie-Screening

Ergebnisse aus der Prävalenzphase
  • D. Hungermann
  • S. Weigel
  • E. Korsching
  • W. Heindel
  • W. Böcker
  • T. Decker
Schwerpunkt: Mammapathologie

Zusammenfassung

Hintergrund

Im Rahmen des Mammographie-Screenings nach EU-Leitlinien wird bei bis zu 3% der Teilnehmerinnen eine Biopsie durchgeführt. Ziel der Untersuchung war der Vergleich des Befundspektrums der histopathologischen Ergebnisse der im Screening durchgeführten minimal-invasiven Biopsien (MIB) mit Mikrokalk im Vergleich zu MIB ohne Mikrokalk.

Material und Methoden

Analyse der prospektiv erfassten histologischen Befundkomponenten der von Juli 2006 bis Juni 2007 durchgeführten MIB anhand der Brust-Screening-Pathologie-Datenbank am Referenzzentrum Münster.

Ergebnisse

4326 MIB wurden untersucht. 2161 MIB ergaben benigne (B1 bis B3) und 2165 maligne (B4 bis B5) Ergebnisse mit einer Gesamtmalignitätsrate von 50,04%. 1809 MIB trugen Mikrokalk und 2517 waren frei von Mikrokalk. Die histologischen Befunde und die Verteilung der B-Kategorien der MIB mit und ohne Mikrokalknachweis divergierten: Der Anteil der B2-Befunde betrug 44,5% vs. 24,2%, die B3-Rate 18,2% vs. 5,5% und die Malignitätsrate 36,8% vs. 59,5%. 83,3% der duktalen Carcinoma in situ (DCIS) wurde in mikrokalkhaltigen MIB gefunden.

Schlussfolgerung

Mikrokalkhaltige MIB bieten im Vergleich zu MIB ohne Mikrokalk ein komplett anderes Diagnosespektrum, insbesondere mit großem B3-Anteil. Bei niedrigerer Malignitätsrate werden an mikrokalkhaltigen MIB bei weitem die meisten DCIS diagnostiziert.

Schlüsselwörter

Mamma Histopathologie Mikrokalk Mammographie-Screening 

Abkürzungen

AEPDT

Atypische Epithelproliferationen vom duktalen Typ

BI-RADS

„Breast Imaging Reporting and Data System“

DCIS

Duktales Carcinoma in situ

FEA

Flache epitheliale Atypie

LN

Lobuläre Neoplasie

MIB

Minimal-invasive Biopsie

UICC

„Union Internationale Contre le Cancer“

VAB

Vakuumassistierte Biopsie

Diagnostics of microcalcifications from minimally invasive biopsies in mammography screening

Results from the prevalence phase

Abstract

Background

In mammography screening programmes carried out according to European guidelines, minimally invasive biopsies (MIB) are performed on up to 3% of participants. The aim of this study was to analyse the spectrum of histopathological findings including B categories in MIBs with microcalcifications compared to MIBs without microcalcifications.

Material and methods

Prospectively collected histological findings of MIBs taken during the period July 2006 to June 2007 were analysed using the Breast Screening Pathology Database of the Reference Centre in Münster.

Results

Of the 4,326 MIBs investigated, 2,161 were benign (B1-B3) whereas 2,165 were malignant (B4-B5) resulting in an overall malignancy rate of 50.04%. Of the MIBs 1,809 contained microcalcifications and 2,517 did not. Cases with microcalcifications showed a different distribution of B categories: B2 was found in 44.5% versus 24.2%, B3 in 18.2% versus 5.5% and the malignancy rate of cases with microcalcifications was 36.8% versus 59.5%. Of all cases of ductal carcinoma in situ (DCIS) detected in the screening programme, 83.35% were diagnosed in MIBs containing microcalcifications.

Conclusions

MIBs containing microcalcifications showed a different spectrum of diagnoses, especially higher rates of B3 lesions. Even though MIBs without microcalcifications showed a higher overall malignancy rate, most cases of DCIS were diagnosed in MIB containing microcalcifications.

Keywords

Breast Histopathology Microcalcification Mammography screening 

Literatur

  1. 1.
    Berg WA, Arnoldus CL, Teferra E, Bhargavan M (2001) Biopsy of amorphous breast calcifications: Pathologic outcome and yield at stereotactic biopsy. Radiology 221:495–503PubMedCrossRefGoogle Scholar
  2. 2.
    Burnside ES, Ochsner JE, Fowler KJ et al (2007) Use of microcalcification descriptors in BI-RADS 4th edition to stratify risk of malignancy. Radiology 242:388–395PubMedCrossRefGoogle Scholar
  3. 3.
    Carder PJ, Liston JC (2003) Will the spectrum of lesions prompting a „B3“ breast core biopsy increase the benign biopsy rate? J Clin Pathol 56:133–138PubMedCrossRefGoogle Scholar
  4. 4.
    Roos M de, Vegt B van der, Vries J de et al (2007) Pathological and biological differences between screen-detected and interval ductal carcinoma in situ of the breast. Ann Surg Oncol 14:2097–2104PubMedCrossRefGoogle Scholar
  5. 5.
    Duffy SW, Agbaje O, Tabar L et al (2005) Overdiagnosis and overtreatment of breast cancer: Estimates of overdiagnosis from two trials of mammographic screening for breast cancer. Breast Cancer Res 7:258–265PubMedCrossRefGoogle Scholar
  6. 6.
    Duffy SW, Tabar L, Vitak B et al (2003) The relative contributions of screen-detected in situ and invasive breast carcinomas in reducing mortality from the disease. Eur J Cancer 39:1755–1760PubMedCrossRefGoogle Scholar
  7. 7.
    El-Sayed ME, Rakha EA, Reed J et al (2008) Audit of performance of needle core biopsy diagnoses of screen detected breast lesions. Eur J Cancer 44:2580–2586PubMedCrossRefGoogle Scholar
  8. 8.
    Erbas B, Amos A, Fletcher A et al (2004) Incidence of invasive breast cancer and ductal carcinoma in situ in a screening program by age: Should older women continue screening?. Cancer Epidemiol Biomarkers Prev 13:1569–1573PubMedGoogle Scholar
  9. 9.
    Ernster VL, Barclay J, Kerlikowske K et al (1996) Incidence of and treatment for ductal carcinoma in situ of the breast. JAMA 275:913–918PubMedCrossRefGoogle Scholar
  10. 10.
    Evans AJ, Pinder S, Ellis IO et al (1994) Screening-detected and symptomatic ductal carcinoma in situ: Mammographic features with pathologic correlation. Radiology 191:237–240PubMedGoogle Scholar
  11. 11.
    Evans AJ, Pinder SE, Ellis IO, Wilson AR (2001) Screen detected ductal carcinoma in situ (DCIS): Overdiagnosis or an obligate precursor of invasive disease?. J Med Screen 8:149–151PubMedCrossRefGoogle Scholar
  12. 12.
    Karahaliou A, Skiadopoulos S, Boniatis I et al (2007) Texture analysis of tissue surrounding microcalcifications on mammograms for breast cancer diagnosis. Br J Radiol 80:648–656PubMedCrossRefGoogle Scholar
  13. 13.
    Kettritz U, Morack G, Decker T (2005) Stereotactic vacuum-assisted breast biopsies in 500 women with microcalcifications: Radiological and pathological correlations. Eur J Radiol 55:270–276PubMedCrossRefGoogle Scholar
  14. 14.
    Kumaraswamy V, Carder PJ (2007) Examination of breast needle core biopsy specimens performed for screen-detected microcalcification. J Clin Pathol 60:681–684PubMedCrossRefGoogle Scholar
  15. 15.
    Liberman L, Abramson AF, Squires FB et al (1998) The breast imaging reporting and data system: Positive predictive value of mammographic features and final assessment categories. AJR Am J Roentgenol 171:35–40PubMedGoogle Scholar
  16. 16.
    Maxwell AJ, Pearson JM, Bishop HM (2002) Crude open biopsy rates for benign screen detected lesions no longer reflect breast screening quality–time to change the standard. J Med Screen 9:83–85PubMedCrossRefGoogle Scholar
  17. 17.
    Meyer JE, Smith DN, Lester SC et al (1999) Large-core needle biopsy of nonpalpable breast lesions. JAMA 281:1638–1641PubMedCrossRefGoogle Scholar
  18. 18.
    Olsen AH, Jensen A, Njor SH et al (2003) Breast cancer incidence after the start of mammography screening in Denmark. Br J Cancer 88:362–365PubMedCrossRefGoogle Scholar
  19. 19.
    Orel SG, Kay N, Reynolds C, Sullivan DC (1999) BI-RADS categorization as a predictor of malignancy. Radiology 211:845–850PubMedGoogle Scholar
  20. 20.
    Perry NM, Broeders M, Wolf C de et al (2006) European guidelines for quality assurance in breast cancer screening and diagnosis. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  21. 21.
    Tan PH, Ho JT, Ng EH et al (2000) Pathologic-radiologic correlations in screen-detected ductal carcinoma in situ of the breast: Findings of the Singapore Breast Screening Project. Int J Cancer 90:231–236PubMedCrossRefGoogle Scholar
  22. 22.
    The Swedish Organised Service Screening Evaluation Group (2006) Reduction in breast cancer mortality from organized service screening with mammography: 1 Further confirmation with extended data. Cancer Epidemiol Biomarkers Prev 15:45–51CrossRefGoogle Scholar
  23. 23.
    Steenbergen L van, Voogd A, Roukema J et al (2008) Screening caused rising incidence rates of ductal carcinoma in-situ of the breast. Breast Cancer Res Treat [online first: DOI 10.1007/s10549-008-0067-5]Google Scholar
  24. 24.
    Warnberg F, Bergh J, Holmberg L (1999) Prognosis in women with a carcinoma in situ of the breast: A population-based study in Sweden. Cancer Epidemiol Biomarkers Prev 8:769–774PubMedGoogle Scholar
  25. 25.
    Wells CA, Amendoeira I, Apostolikas N et al (2006) The European Working Group for Breast Screening Pathology Quality Assurance Guidelines for Pathology – cytological and histological non-operative diagnosis. In: Perry NM, Broeders M, Wolf C de et al (eds) European Guidelines for Quality Assurance in Breast Cancer Screening and Diagnosis. Office for Official Publication of the European Communities, LuxembourgGoogle Scholar

Copyright information

© Springer Medizin Verlag 2009

Authors and Affiliations

  • D. Hungermann
    • 1
  • S. Weigel
    • 2
  • E. Korsching
    • 1
  • W. Heindel
    • 2
  • W. Böcker
    • 1
  • T. Decker
    • 1
  1. 1.Brust-Screening-Pathologie Gerhard Domagk-Institut für PathologieUniversitätsklinikum MünsterMünsterDeutschland
  2. 2.Referenzzentrum Mammographie, Institut für Klinische RadiologieUniversitätsklinikum MünsterMünsterDeutschland

Personalised recommendations