Der Pathologe

, Volume 28, Issue 1, pp 29–35 | Cite as

Sind primär extranodale diffuse großzellige B-Zell-Lymphome organotypische Erkrankungen?

Schwerpunkt: Lymphome als Organerkrankungen

Zusammenfassung

Etwa 30–40% diffuser großzelliger B-Zell-Lymphome (DLBCL) entstehen primär extranodal. Am häufigsten treten sie im Gastrointestinaltrakt auf, überwiegend im Magen, häufiger aber auch in ZNS, Hoden, Lunge oder Haut. Morphologisch zeigen die Tumorzellen das gesamte Spektrum peripherer B-Blasten: Zentroblasten, Immunoblasten oder Plasmoblasten. Von primär nodalen (häufig systemischen) DLBCL sind sie morphologisch also kaum abzugrenzen. Neuere Daten deuten aber darauf hin, dass sich extranodale DLBCL insbesondere in ihren molekularen Charakteristika von nodalen Tumoren (und auch untereinander) unterscheiden und häufig organotypische Eigenschaften aufweisen. Diese betreffen zum einen eine besondere organotypische und/oder klinische Präsentation, wie sie typisch für die in der WHO-Klassifikation definierten Subtypen der DLBCL (primär mediastinales DLBCL, intravaskuläres DLBCL, primäres Ergusslymphom) ist. Zum anderen zeigen primär extranodale DLBCL in der Regel eine gegenüber nodalen Tumoren divergente genetische Konstitution mit besonderen entitätsspezifischen Aberrationen, die wiederum mit dem besonderen Entstehungsort der Tumoren assoziiert scheint, wie z. B. die häufige Deletion des HLA-Genlocus in DLBCL immunprivilegierter Lokalisationen wie ZNS oder Hoden. Schließlich sprechen z. T. sicherlich noch präliminäre Daten für eine besondere organotypische Genexpressionssignatur primär extranodaler DLBCL und damit für offenbar organotypische – unterschiedliche – Transformationswege.

Schlüsselwörter

Diffuses großzelliges B-Zell-Lymphom Extranodales Lymphom Malignes Lymphom Genetik 

Extranodal diffuse large B-cell lymphoma – an organotypic disease?

Abstract

Roughly 30–40% of diffuse large B-cell lymphomas (DLBCL) arise primarily in extranodal sites. Most frequently, they occur in the gastrointestinal tract, especially in the gastric mucosa. They also occur in the central nervous system, as testicular lymphomas, in the lungs, or in the skin. Morphologically, they show the whole spectrum of peripheral B-blasts: centroblasts, immunoblasts, or plasmoblasts. Thus, there is no actual difference in their cytomorphological presentation compared to their nodal—and frequently systemic—counterparts. However, recent data point to profound differences in primary extranodal DLBCL compared to primary nodal tumors, as well as to each other, frequently relating to their molecular characteristics and especially implying organotypic features. These characteristics may relate to a particular organotypic site of origin, or the particular clinicopathogenetic setting in which the tumors arise. This is exemplified in the description of the DLBCL subtypes as defined by the World Health Organization classification (mediastinal or intravascular B-cell lymphoma; primary effusion lymphoma). On the other hand, primary extranodal DLBCL are frequently characterized by a particular (cyto-)genetic constitution, often related to their site of origin. Finally, some preliminary data on gene expression profiling strongly argue in favor of particular gene signatures for primary extranodal DLBCL, and hence in favor of particular organotypic transformation pathways.

Keywords

Diffuse large B-cell lymphoma Extranodal lymphoma Malignant lymphoma Genetics 

Literatur

  1. 1.
    Jaffe ES, Harris NL, Stein H, Vardiman JW (eds) (2001) World Health Organization Classification of Tumours. Pathology and genetics of tumours of haematopoietic and lymphoid tissues. IARC, LyonGoogle Scholar
  2. 2.
    Dave SS, Fu K, Wright GW et al. (2006) Molecular diagnosis of Burkitt’s lymphoma. N Engl J Med 354: 2431–2442CrossRefPubMedGoogle Scholar
  3. 3.
    Hummel M, Bentink S, Berger H et al. (2006) A biologic definition of Burkitt’s lymphoma from transcriptional and genomic profiling. N Engl J Med 354: 2419–2430CrossRefPubMedGoogle Scholar
  4. 4.
    Lossos IS (2005) Molecular pathogenesis of diffuse large B-cell lymphoma. J Clin Oncol 23: 6351–6357Google Scholar
  5. 5.
    Katzenberger T, Ott G, Klein T et al. (2004) Cytogenetic alterations affecting BCL6 are predominantly found in follicular lymphomas grade 3B with a diffuse large B-cell component. Am J Pathol 165: 481–490PubMedGoogle Scholar
  6. 6.
    Bea S, Zettl A, Wright G et al. (2005) Diffuse large B-cell lymphoma subgroups have distinct genetic profiles that influence tumor biology and improve gene expression-based survival prediction. Blood 106: 3183-3190CrossRefPubMedGoogle Scholar
  7. 7.
    Rosenwald A, Wright G, Chan WC et al. (2002) The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med 346: 1937–1947CrossRefPubMedGoogle Scholar
  8. 8.
    Joos S, Otano-Joos MI, Ziegler S et al. (1996) Primary mediastinal (thymic) B-cell lymphoma is characterized by gains of chromosomal material including 9p and amplification of the REL gene. Blood 87: 1571–1578PubMedGoogle Scholar
  9. 9.
    Melzner I, Bucur AJ, Bruderlein S et al. (2005) Biallelic mutation of SOCS-1 impairs JAK2 degradation and sustains phospho-JAK2 action in the MedB-1 mediastinal lymphoma line. Blood 105: 2535–2542CrossRefPubMedGoogle Scholar
  10. 10.
    Rosenwald A, Wright G, Leroy K et al. (2003) Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med 198: 851–862CrossRefPubMedGoogle Scholar
  11. 11.
    Koch P, del Valle F, Berdel WE et al. (2001) Primary gastrointestinal non-Hodgkin’s lymphoma: I. Anatomic and histologic distribution, clinical features, and survival data of 371 patients registered in the German Multicenter Study GIT NHL 01/92. J Clin Oncol 19: 3861–3873Google Scholar
  12. 12.
    Omonishi K, Yoshino T, Sakuma I et al. (1998) bcl-6 protein is identified in high-grade but not low-grade mucosa-associated lymphoid tissue lymphomas of the stomach. Mod Pathol 11: 181–185PubMedGoogle Scholar
  13. 13.
    Ott G, Katzenberger T, Greiner A et al. (1997) The t(11;18)(q21;q21) chromosome translocation is a frequent and specific aberration in low-grade but not high-grade malignant non-Hodgkin’s lymphomas of the mucosa-associated lymphoid tissue (MALT-) type. Cancer Res 57: 3944–3948PubMedGoogle Scholar
  14. 14.
    Chen YW, Hu XT, Liang AC et al. (2006) High BCL6 expression predicts better prognosis, independent of BCL6 translocation status, translocation partner, or BCL6-deregulating mutations, in gastric lymphoma. Blood 108: 2373–2383CrossRefPubMedGoogle Scholar
  15. 15.
    Barth TF, Dohner H, Werner CA et al. (1998) Characteristic pattern of chromosomal gains and losses in primary large B-cell lymphomas of the gastrointestinal tract. Blood 91: 4321–4330PubMedGoogle Scholar
  16. 16.
    van Krieken JH, Raffeld M, Raghoebier S et al. (1990) Molecular genetics of gastrointestinal non-Hodgkin’s lymphomas: unusual prevalence and pattern of c-myc rearrangements in aggressive lymphomas. Blood 76: 797–800PubMedGoogle Scholar
  17. 17.
    Haralambieva E, Adam P, Ventura R et al. (2006) Genetic rearrangement of FOXP1 is predominantly detected in a subset of diffuse large B-cell lymphomas with extranodal presentation. Leukemia 20: 1300–1303CrossRefPubMedGoogle Scholar
  18. 18.
    Thompsett AR, Ellison DW, Stevenson FK et al. (1999) V(H) gene sequences from primary central nervous system lymphomas indicate derivation from highly mutated germinal center B cells with ongoing mutational activity. Blood 94: 1738–1746PubMedGoogle Scholar
  19. 19.
    Montesinos-Rongen M, Van Roost D, Schaller C et al. (2004) Primary diffuse large B-cell lymphomas of the central nervous system are targeted by aberrant somatic hypermutation. Blood 103: 1869–1875CrossRefPubMedGoogle Scholar
  20. 20.
    Jordanova ES, Riemersma SA, Philippo K et al. (2002) Hemizygous deletions in the HLA region account for loss of heterozygosity in the majority of diffuse large B-cell lymphomas of the testis and the central nervous system. Genes Chromosomes Cancer 35: 38–48CrossRefPubMedGoogle Scholar
  21. 21.
    Riemersma SA, Jordanova ES, Schop RF et al. (2000) Extensive genetic alterations of the HLA region, including homozygous deletions of HLA class II genes in B-cell lymphomas arising in immune-privileged sites. Blood 96: 3569–3577PubMedGoogle Scholar
  22. 22.
    Rimsza LM, Roberts RA, Campo E et al. (2006) Loss of major histocompatibility class II expression in non-immune-privileged site diffuse large B-cell lymphoma is highly coordinated and not due to chromosomal deletions. Blood 107: 1101–1107CrossRefPubMedGoogle Scholar
  23. 23.
    Rickert CH, Dockhorn-Dworniczak B, Simon R et al. (1999) Chromosomal imbalances in primary lymphomas of the central nervous system. Am J Pathol 155: 1445–1451PubMedGoogle Scholar
  24. 24.
    Nakamura M, Kishi M, Sakaki T et al. (2003) Novel tumor suppressor loci on 6q22–23 in primary central nervous system lymphomas. Cancer Res 63: 737–741PubMedGoogle Scholar
  25. 25.
    Rubenstein J, Fridlyand J, Shen A et al. (2006) Gene expression and angiotropism in primary CNS lymphoma. Blood 107: 3716–3723CrossRefPubMedGoogle Scholar
  26. 26.
    Bosga-Bouwer AG, Kok K, Booman M et al. (2006) Array comparative genomic hybridization reveals a very high frequency of deletions of the long arm of chromosome 6 in testicular lymphoma. Genes Chromosomes Cancer 45: 976–981CrossRefPubMedGoogle Scholar
  27. 27.
    Le Boit P BG, Weedon D, Sarasin A (2006) World Health Organization Classification of Tumours. Pathology and genetics of skin tumours. IARC, LyonGoogle Scholar
  28. 28.
    Dijkman R, Tensen CP, Jordanova ES et al. (2006) Array-based comparative genomic hybridization analysis reveals recurrent chromosomal alterations and prognostic parameters in primary cutaneous large B-cell lymphoma. J Clin Oncol 24: 296–305CrossRefPubMedGoogle Scholar
  29. 29.
    Hoefnagel JJ, Dijkman R, Basso K et al. (2005) Distinct types of primary cutaneous large B-cell lymphoma identified by gene expression profiling. Blood 105: 3671–3678CrossRefPubMedGoogle Scholar
  30. 30.
    Willemze R (2006) Primary cutaneous B-cell lymphoma: classification and treatment. Curr Opin Oncol 18: 425–431CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2007

Authors and Affiliations

  1. 1.Institut für PathologieJulius-Maximilians-Universität WürzburgWürzburgDeutschland

Personalised recommendations