Advertisement

OR Spectrum

, Volume 41, Issue 4, pp 943–979 | Cite as

Flexible layouts for the mixed-model assembly of heterogeneous vehicles

  • Andreas HottenrottEmail author
  • Martin Grunow
Regular Article
  • 196 Downloads

Abstract

The increasing vehicle heterogeneity is pushing the widespread mixed-model assembly line to its limit. The paced, serial design is incapable of coping with the diversity in workloads and task requirements. As an alternative, the automotive industry has started to introduce flexible layouts for segments of the assembly. In flexible layouts, the stations are no longer arranged serially and no longer linked by a paced transportation system but by automated guided vehicles. This paper investigates the initial configuration of such systems. The flexible layout design problem (FLDP) is the problem of designing a flexible layout for a segment of the assembly of heterogeneous vehicles. It comprises an integrated station formation and station location problem. Moreover, the FLDP anticipates the operational flow allocation of the automated guided vehicles. We formalize the FLDP in a mixed-integer linear program and develop a decomposition-based solution approach that can optimally solve small- to mid-sized instances. In addition, we transform this solution approach to a matheuristic that generates high-quality solutions in acceptable time for large-sized instances. We compare the efficiency of flexible layouts to mixed-model assembly lines and quantify the benefits of flexible layouts which increase with vehicle heterogeneity.

Keywords

Product variety Automotive industry Job shop configuration Cellular design Classification of decision problems 

Notes

References

  1. Aneke NAG, Carrie AS (1986) A design technique for the layout of multi-product flowlines. Int J Prod Res 24(3):471–481.  https://doi.org/10.1080/00207548608919743 CrossRefGoogle Scholar
  2. Askin RG, Mitwasi M (1992) Integrating facility layout with process selection and capacity planning. Eur J Oper Res 57(2):162–173.  https://doi.org/10.1016/0377-2217(92)90040-G CrossRefGoogle Scholar
  3. Becker C, Scholl A (2006) A survey on problems and methods in generalized assembly line balancing. Eur J Oper Res 168(3):694–715.  https://doi.org/10.1016/j.ejor.2004.07.023 CrossRefGoogle Scholar
  4. Benjaafar S, Sheikhzadeh M (2000) Design of flexible plant layouts. IIE Trans 32(4):309–322.  https://doi.org/10.1080/07408170008963909 CrossRefGoogle Scholar
  5. Boysen N, Fliedner M, Scholl A (2007) A classification of assembly line balancing problems. Eur J Oper Res 183(2):674–693.  https://doi.org/10.1016/j.ejor.2006.10.010 CrossRefGoogle Scholar
  6. Boysen N, Fliedner M, Scholl A (2009) Production planning of mixed-model assembly lines: overview and extensions. Prod Plan Control 20(5):455–471.  https://doi.org/10.1080/09537280903011626 CrossRefGoogle Scholar
  7. Browne J, Dubois D, Rathmill K, Sethi SP, Stecke KE (1984) Classification of flexible manufacturing systems. FMS Mag 2(2):114–117Google Scholar
  8. Bukchin J, Dar-El EM, Rubinovitz J (2002) Mixed model assembly line design in a make-to-order environment. Comput Ind Eng 41(4):405–421.  https://doi.org/10.1016/S0360-8352(01)00065-1 CrossRefGoogle Scholar
  9. Bukchin Y, Rabinowitch I (2006) A branch-and-bound based solution approach for the mixed-model assembly line-balancing problem for minimizing stations and task duplication costs. Eur J Oper Res 174(1):492–508.  https://doi.org/10.1016/j.ejor.2005.01.055 CrossRefGoogle Scholar
  10. Caux C, Bruniaux R, Pierreval H (2000) Cell formation with alternative process plans and machine capacity constraints: a new combined approach. Int J Prod Econ 64(1–3):279–284.  https://doi.org/10.1016/S0925-5273(99)00065-1 CrossRefGoogle Scholar
  11. Chen DS, Wang Q, Chen HC (2001) Linear sequencing for machine layouts by a modified simulated annealing. Int J Prod Res 39(8):1721–1732.  https://doi.org/10.1080/00207540010023565 CrossRefGoogle Scholar
  12. Defersha FM, Hodiya A (2017) A mathematical model and a parallel multiple search path simulated annealing for an integrated distributed layout design and machine cell formation. J Manuf Syst 43:195–212.  https://doi.org/10.1016/j.jmsy.2017.04.001 CrossRefGoogle Scholar
  13. Drira A, Pierreval H, Hajri-Gabouj S (2007) Facility layout problems: a survey. Ann Rev Control 31(2):255–267.  https://doi.org/10.1016/j.arcontrol.2007.04.001 CrossRefGoogle Scholar
  14. Goldengorin B, Krushinsky D, Pardalos PM (2013) Cell Formation in Industrial Engineering, vol 79. Springer, New York, New York, NY.  https://doi.org/10.1007/978-1-4614-8002-0 CrossRefGoogle Scholar
  15. Hahn R (1972) Produktionsplanung bei Linienfertigung. De Gruyter, Berlin.  https://doi.org/10.1515/9783110835687 CrossRefGoogle Scholar
  16. Handelsblatt (2016) Audi plant eine revolution: Keine fließbänder mehr. Handelsblatt 2016, http://www.handelsblatt.com/unternehmen/industrie/keine-fliessbaender-mehr-audi-plant-eine-revolution/14894190.html
  17. Heragu SS, Chen JS (1998) Optimal solution of cellular manufacturing system design: benders’ decomposition approach. Eur J Oper Res 107(1):175–192.  https://doi.org/10.1016/S0377-2217(97)00256-7 CrossRefGoogle Scholar
  18. Heragu SS, Kusiak A (1988) Machine layout problem in flexible manufacturing systems. Oper Res 36(2):258–268.  https://doi.org/10.1287/opre.36.2.258 CrossRefGoogle Scholar
  19. Ho YC, Moodie CL (1998) Machine layout with a linear single-row flow path in an automated manufacturing system. J Manuf Syst 17(1):1–22.  https://doi.org/10.1016/S0278-6125(98)80006-X CrossRefGoogle Scholar
  20. Hoffmann TR (1992) Eureka: a hybrid system for assembly line balancing. Manag Sci 38(1):39–47.  https://doi.org/10.1287/mnsc.38.1.39 CrossRefGoogle Scholar
  21. Jaramillo JR, McKendall AR (2010) The generalised machine layout problem. Int J Prod Res 48(16):4845–4859.  https://doi.org/10.1080/00207540903117840 CrossRefGoogle Scholar
  22. Keller B, Buscher U (2015) Single row layout models. Eur J Oper Res 245(3):629–644.  https://doi.org/10.1016/j.ejor.2015.03.016 CrossRefGoogle Scholar
  23. Li J, Gao J (2014) Balancing manual mixed-model assembly lines using overtime work in a demand variation environment. Int J Prod Res 52(12):3552–3567.  https://doi.org/10.1080/00207543.2013.874603 CrossRefGoogle Scholar
  24. Meyr H (2004) Supply chain planning in the German automotive industry. OR Spectr 26(4):447–470.  https://doi.org/10.1007/s00291-004-0168-4 CrossRefGoogle Scholar
  25. Montreuil B (1999) Fractal layout organization for job shop environments. Int J Prod Res 37(3):501–521.  https://doi.org/10.1080/002075499191643 CrossRefGoogle Scholar
  26. Nagi R, Harhalakis G, Proth JM (1990) Multiple routeings and capacity considerations in group technology applications. Int J Prod Res 28(12):1243–1257.  https://doi.org/10.1080/00207549008942864 CrossRefGoogle Scholar
  27. Papaioannou G, Wilson JM (2010) The evolution of cell formation problem methodologies based on recent studies (1997–2008): review and directions for future research. Eur J Oper Res 206(3):509–521.  https://doi.org/10.1016/j.ejor.2009.10.020 CrossRefGoogle Scholar
  28. Pil FK, Holweg M (2004) Linking product variety to order-fulfillment strategies. Interfaces 34(5):394–403.  https://doi.org/10.1287/inte.1040.0092 CrossRefGoogle Scholar
  29. Rajamani D, Singh N, Aneja YP (1990) Integrated design of cellular manufacturing systems in the presence of alternative process plans. Int J Prod Res 28(8):1541–1554.  https://doi.org/10.1080/00207549008942811 CrossRefGoogle Scholar
  30. Roberts SD, Villa CD (1970) On a multiproduct assembly line-balancing problem. AIIE Trans 2(4):361–364.  https://doi.org/10.1080/05695557008974777 CrossRefGoogle Scholar
  31. Scholl A (1993) Data of assembly line balancing problems. Schriften zur Quantitativen Betriebswirtschaftslehre—Technische Hochschule DarmstadtGoogle Scholar
  32. Sofianopoulou S (1999) Manufacturing cells design with alternative process plans and/or replicate machines. Int J Prod Res 37(3):707–720.  https://doi.org/10.1080/002075499191742 CrossRefGoogle Scholar
  33. Solimanpur M, Vrat P, Shankar R (2004) A multi-objective genetic algorithm approach to the design of cellular manufacturing systems. Int J Prod Res 42(7):1419–1441.  https://doi.org/10.1080/00207540310001638073 CrossRefGoogle Scholar
  34. Urban TL, Chiang WC, Russell RA (2000) The integrated machine allocation and layout problem. Int J Prod Res 38(13):2911–2930.  https://doi.org/10.1080/00207540050117369 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.TUM School of ManagementTechnical University of MunichMunichGermany

Personalised recommendations