Advertisement

OR Spectrum

pp 1–43 | Cite as

Motion and layout planning in a grid-based early baggage storage system

Heuristic algorithms and a simulation study
  • Altan Yalcin
  • Achim KobersteinEmail author
  • Kai-Oliver Schocke
Regular Article
  • 33 Downloads

Abstract

Grid-based storage systems consist of many adjacent square cells arranged in a rectangular grid. Cells are either empty or occupied by a storage item. Items are stored on conveyors and are movable simultaneously and independently into the four cardinal directions. This technology allows for very dense storage. Previous research on grid-based storages has mainly focused on retrieval performance analysis of a single storage item. In this paper, we contribute a framework for the efficient storage and retrieval of a large number of storage items based on a multi-agent routing algorithm. We evaluate the framework using different storage and retrieval strategies in a simulation-based case study, in which we design and analyze a grid-based early baggage storage system at a major German airport.

Keywords

Grid-based storage Puzzle-based storage High-density storage Multi-agent routing Simulation Airport logistics Early baggage storage 

Notes

Acknowledgements

The present study was financially supported by Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz mit der Förderlinie 3: LOEWE-KMU-Verbundvorhaben of Hesses Ministry of Higher Education, Research, and Arts from the research funding program (Grant No. HA 405/13-44), (Grant No. HA 422/14-32).

References

  1. Alfieri A, Cantamessa M, Monchiero A, Montagna F (2010) Heuristics for puzzle-based storage systems driven by a limited set of automated guided vehicles. J Intell Manuf 23(5):1695–1705CrossRefGoogle Scholar
  2. Desaulniers G, Langevin A, Riopel D, Villeneuve B (2003) Dispatching and conflict-free routing of automated guided vehicles: an exact approach. Int J Flex Manuf Syst 15(4):309–331CrossRefGoogle Scholar
  3. Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1(1):269–271CrossRefGoogle Scholar
  4. Doppler (2016) DCS 2DL. http://doppler.gr/en/products/parking-systems/dps-xryc/. Accessed 06 Dec 2016
  5. Gebhardt (2016) Gebhardt flexconveyor. http://www.gebhardt-foerdertechnik.de/de/produkte/flexconveyor/. Accessed 06 Dec 2016
  6. Gue KR (2006) Very high density storage systems. IIE Trans 38:79–90CrossRefGoogle Scholar
  7. Gue KR, Kim S (2007) Puzzle-based storage systems. Nav Res Logist 54(5):556–567CrossRefGoogle Scholar
  8. Gue KR, Furmans K, Seibold Z, Uludag O (2014) Gridstore: a puzzle-based storage system with decentralized control. IEEE Trans Autom Sci Eng 11(2):429–438CrossRefGoogle Scholar
  9. Hart P, Nilsson N, Raphael B (1968) A formal basis for the heuristic determination of minimum cost paths. IEEE Trans Syst Sci Cyber 4(2):100–107CrossRefGoogle Scholar
  10. Hatzack W, Nebel B (2014) The operational traffic control problem: computational complexity and solutions. In: 6th European conference on planningGoogle Scholar
  11. Hyundai Elevator (2011) Hip (hydundai integrated parking systems). http://hyundaielevator.co.kr/eng/parking/car/HIP/large_scale.jsp. Accessed 06 Dec 2016
  12. ICAM (2016) Smoov ASRV generation 2. http://www.smoov-asrv.eu/. Accessed 06 Dec 2016
  13. IFL IfFuL (2015) Gridstore. https://www.youtube.com/watch?v=LxzBuB_JCN4. Accessed 06 Dec 2016
  14. Kim CW, Tanchoco JMA (1991) Conflict-free shortest-time bidirectional AGV routeing. Int J Prod Res 29(12):2377–2391CrossRefGoogle Scholar
  15. Kota VR, Taylor D, Gue KR (2010) Retrieval time performance in puzzle-based storage systems. In: Johnson A, Miller J (eds) Proceedings of the 2010 industrial engineering research conference (IERC)Google Scholar
  16. Kota VR, Taylor D, Gue KR (2015) Retrieval time performance in puzzle-based storage systems. J Manuf Technol Manag 26(4):582–602CrossRefGoogle Scholar
  17. Latombe JC (1991) Robot motion planning. Springer, BerlinCrossRefGoogle Scholar
  18. Mayer SH (2009) Development of a completely decentralized control system for modular continuous conveyors. Ph.D. thesis, Karlsruhe, Karlsruhe Univ, Diss, 2009. http://d-nb.info/101409898X/34
  19. Mutrade (2014) Automatic parking system. http://www.mutrad.com/AutomaticParkingSystem.html. Accessed 06 Dec 2016
  20. Nobbe C (2015) Vergleich technischer implementierungen für gridflow-systeme. Ph.D. thesisGoogle Scholar
  21. ODTH (2015) Magic black box. http://www.odth.be/magic-black-box/?lang=en. Accessed 06 Dec 2016
  22. Roodbergen KJ, Vis IF (2009) A survey of literature on automated storage and retrieval systems. Eur J Oper Res 194(2):343–362CrossRefGoogle Scholar
  23. RR Parkon (2014) Puzzle parking. http://www.rrparkon.com/product/puzzle-parking. Accessed 06 Dec 2016
  24. Schwab M (2015) A decentralized control strategy for high density material flow systems with automated guided vehicles. Ph.D. thesisGoogle Scholar
  25. Sgall J (1998) On-line scheduling. In: Fiat A, Woeginger GJ (eds) Online algorithms: the state of the art. Springer, Berlin, pp 196–231CrossRefGoogle Scholar
  26. Ter Mors AW, Witteveen C, Zutt J, Kuipers FA (2010) Context-aware route planning. In: Dix J, Witteveen C (eds) Multiagent system technologies, 8th German Conference, MATES 2010, Leipzig, Germany, vol 6251. Lecture notes in computer science. Springer, pp 138–149Google Scholar
  27. Van Den Berg JP, Gademann A (1999) Optimal routing in an automated storage/retrieval system with dedicated storage. IIE Trans 31(5):407–415CrossRefGoogle Scholar
  28. Woehr (2016) Liverpool—Parksafe 583. http://www.woehr.de/en/project/liverpool-parksafe-583.html. Accessed 06 Dec 2016
  29. Yalcin A, Koberstein A, Schocke KO (2018) An optimal and a heuristic algorithm for the single-item retrieval problem in puzzle-based storage systems with multiple escorts. Int J Prod Res.  https://doi.org/10.1080/00207543.2018.1461952
  30. Zaerpour N, Yu Y, de Koster RBM (2015) Small is beautiful: a framework for evaluating and optimizing live-cube compact storage systems. Transp Sci.  https://doi.org/10.1287/trsc.2015.0586

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.European University Viadrina Frankfurt (Oder)Frankfurt (Oder)Germany
  2. 2.Frankfurt University of Applied SciencesFrankfurt (Main)Germany

Personalised recommendations