OR Spectrum

pp 1–25 | Cite as

A generator for test instances of scheduling problems concerning cranes in transshipment terminals

  • Dirk Briskorn
  • Florian Jaehn
  • Andreas Wiehl
Regular Article


We present a test data generator that can be used for simulating processes of cranes handling containers. The concepts originate from container storage areas at seaports, but the generator can also be used for other applications, particularly for train terminals. A key aspect is that one or multiple cranes handle containers, that is, they store containers, receiving the containers in a designated handover area; retrieve containers, handing the containers over in the handover area; or reshuffle containers. We present a generic model and outline what is captured by the test data itself and what is left to be estimated by the user. Furthermore, we detail how data are generated to capture the considerable variety of container characteristics, which can be found in major terminals. Finally, we present examples to illustrate the variety of research projects supported by our test data generator.


OR in maritime industry Test data generator Seaport terminals Container cranes 


  1. Alicke K (2002) Modeling and optimization of the intermodal terminal Mega Hub. OR Spectr 24:1–17CrossRefGoogle Scholar
  2. Ballis A, Golias J (2002) Comparative evaluation of existing and innovative rail–road freight transport terminals. Transp Res Part A Policy Pract 36(7):593–611CrossRefGoogle Scholar
  3. Bierwirth C, Meisel F (2010) A survey of berth allocation and quay crane scheduling problems in container terminals. Eur J Oper Res 202:615–627CrossRefGoogle Scholar
  4. Bierwirth C, Meisel F (2015) A follow-up survey of berth allocation and quay crane scheduling problems in container terminals. Eur J Oper Res 244(3):675–689CrossRefGoogle Scholar
  5. Box GE, Muller ME (1958) A note on the generation of random normal deviates. Ann Math Stat 29(2):610–611CrossRefGoogle Scholar
  6. Boysen N, Briskorn D, Emde S (2015) A decomposition heuristic for the twin robots scheduling problem. Nav Res Logist 62:16–22CrossRefGoogle Scholar
  7. Boysen N, Briskorn D, Meisel F (2017) A generalized classification scheme for crane scheduling with interference. Eur J Oper Res 258(1):343–357CrossRefGoogle Scholar
  8. Boysen N, Fliedner M (2010a) Cross dock scheduling: classification, literature review and research agenda. Omega 38:413–422CrossRefGoogle Scholar
  9. Boysen N, Fliedner M (2010b) Determining crane areas in intermodal transshipment yards: the yard partition problem. Eur J Oper Res 204:336–342CrossRefGoogle Scholar
  10. Boysen N, Fliedner M, Jaehn F, Pesch E (2013) A survey on container processing in railway yards. Transp Sci 47(3):312–329CrossRefGoogle Scholar
  11. Briskorn D, Angeloudis P (2016) Scheduling co-operating stacking cranes with predetermined container sequences. Discret Appl Math 201:70–85CrossRefGoogle Scholar
  12. Briskorn D, Emde S, Boysen N (2016) Cooperative twin-crane scheduling. Discret Appl Math 211:40–57CrossRefGoogle Scholar
  13. Briskorn D, Fliedner M (2012) Packing chained items in aligned bins with applications to container transshipment and project scheduling. Math Methods Oper Res 75:305–326CrossRefGoogle Scholar
  14. Cichenski M, Jaehn F, Pawlak G, Pesch E, Singh G, Blazewicz J (2016) An integrated model for the transshipment yard scheduling problem. J Sched 20(1):57–65CrossRefGoogle Scholar
  15. Cramton P, Shoham Y, Steinberg R (eds) (2006) Combinatorial auctions. MIT Press, CambridgeGoogle Scholar
  16. Daganzo C (1989) The crane scheduling problem. Transp Res Part B 23(3):159–175CrossRefGoogle Scholar
  17. Dorndorf U, Schneider F (2010) Scheduling automated triple cross-over stacking cranes in a container yard. OR Spectr 32:617–632CrossRefGoogle Scholar
  18. Ehleiter A, Jaehn F (2016) Housekeeping: foresightful container repositioning. Int J Prod Econ 179:203–211CrossRefGoogle Scholar
  19. Erdogan G, Battarra M, Laporte G (2014) Scheduling twin robots on a line. Nav Res Logist 61:119–130CrossRefGoogle Scholar
  20. Expósito-Izquierdo C, Melián-Batista B, Moreno-Vega M (2012) Pre-marshalling problem: heuristic solution method and instances generator. Expert Syst Appl 39(9):8337–8349CrossRefGoogle Scholar
  21. Froyland G, Koch T, Megow N, Duane E, Wren H (2008) Optimizing the landside operation of a container terminal. OR Spectr 30:53–75CrossRefGoogle Scholar
  22. Gonzalez J, Ponce E, Mataix C, Carrasco J (2008) The automatic generation of transhipment plans for a train-train terminal: application to the Spanish–French border. Transp Plan Technol 31:545–567CrossRefGoogle Scholar
  23. Hall NG, Posner ME (2001) Generating experimental data for computational testing with machine scheduling applications. Oper Res 49:854–865CrossRefGoogle Scholar
  24. Hartmann S (2004) Generating scenarios for simulation and optimization of container terminal logistics. OR Spectr 26:171–192CrossRefGoogle Scholar
  25. HHLA (2017). HHLA container terminal altenwerder. Accessed 13 Nov 2017
  26. Jaehn F, Kress D (2018) Scheduling cooperative gantry cranes with seaside and landside jobs. Discret Appl Math 242:53–68CrossRefGoogle Scholar
  27. Jaehn F, Wiehl A (2017) Approximation algorithms for the twin robots scheduling problem. Working paperGoogle Scholar
  28. Kim K, Park Y-M (2004) A crane scheduling method for port container terminals. Eur J Oper Res 156:752–768CrossRefGoogle Scholar
  29. Kim KH, Kim KY (1999) An optimal routing algorithm for a transfer crane in port container terminals. Transp Sci 33:17–33CrossRefGoogle Scholar
  30. Kim KH, Lee KM, Hwang H (2003) Sequencing delivery and receiving operations for yard cranes in port container terminals. Int J Prod Econ 84:283–292CrossRefGoogle Scholar
  31. Kim NS, Wee BV (2009) Assessment of CO\(_2\) emissions for truck-only and rail-based intermodal freight systems in Europe. Transp Plan Technol 32(4):313–333CrossRefGoogle Scholar
  32. Koch T (2004) Automatik-Portalkrane im CTA-Containerlager. Hebezeuge und Fördermittel 44(11):632–636Google Scholar
  33. Kolisch R, Sprecher A, Drexl A (1995) Characterization and generation of a general class of resource-constrained project scheduling problems. Manag Sci 41:1693–1703CrossRefGoogle Scholar
  34. Lee D-H, Cao Z, Meng Q (2007) Scheduling of two-transtainer systems for loading outbound containers in port container terminals with simulated annealing algorithm. Int J Prod Econ 107:115–124CrossRefGoogle Scholar
  35. Lee D-H, Hui Q, Miao L (2008a) Quay crane scheduling with handling priority in port container terminals. Eng Optim 40:179–189CrossRefGoogle Scholar
  36. Lee D-H, Hui Q, Miao L (2008b) Quay crane scheduling with non-interference constraints in port container terminals. Transp Res Part E 44:124–135CrossRefGoogle Scholar
  37. Leyton-Brown K (2011) Cats website. Accessed 13 Apr 2017
  38. Leyton-Brown K, Shoham Y (2006) A test suite for combinatorial auctions. In: Cramton P, Shoham Y, Steinberg R (eds) Combinatorial auctions. MIT Press, pp 451–478Google Scholar
  39. Li W, Wu Y, Petering MEH, Goh M, de Souza R (2009) Discrete time model and algorithms for container yard crane scheduling. Eur J Oper Res 198:165–172CrossRefGoogle Scholar
  40. Lim A, Rodrigues B, Xiao F, Xu Z (2004) Crane scheduling with spatial constraints. Nav Res Logist 51:386–406CrossRefGoogle Scholar
  41. Lim A, Rodrigues B, Xu Z (2007) A m-parallel crane scheduling problem with a non-crossing constraint. Nav Res Logist 54:115–127CrossRefGoogle Scholar
  42. Martinez M, Gutierrez I, Oliveira A, Arreche Bedia L (2004) Gantry crane operations to transfer containers between trains: a simulation study of a Spanish terminal. Transp Plan Technol 27:261–284CrossRefGoogle Scholar
  43. Matsumoto M, Nishimura T (1998) Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans Model Comput Simul (TOMACS) 8(1):3–30CrossRefGoogle Scholar
  44. Narasimhan A, Palekar US (2002) Analysis and algorithms for the transtainer routing problem in container port operations. Transp Sci 36:63–78CrossRefGoogle Scholar
  45. Ng WC (2005) Crane scheduling in container yards with inter-crane interference. Eur J Oper Res 164:64–78CrossRefGoogle Scholar
  46. Ng WC, Mak KL (2005a) An effective heuristic for scheduling a yard crane to handle jobs with different ready times. Eng Optim 37:867–877CrossRefGoogle Scholar
  47. Ng WC, Mak KL (2005b) Yard crane scheduling in container terminals. Appl Math Model 29:263–276CrossRefGoogle Scholar
  48. Nossack J, Briskorn D, Pesch E (2018) Container dispatching and conflict-free yard crane routing in an automated container terminal. Transp Sci (to appear) Google Scholar
  49. Peterkofsky R, Daganzo C (1990) A branch and bound solution method for the crane scheduling problem. Transp Res Part B 24:159–172CrossRefGoogle Scholar
  50. Port of Hamburg (2017a). Container handling 1990 to 2016. Accessed 13 Apr 2017
  51. Port of Hamburg (2017b). Top world container ports. Accessed 13 Apr 2017
  52. Rotter H (2004) New operating concepts for intermodal transport: the mega hub in Hanover/Lehrte in Germany. Transp Plan Technol 27:347–365CrossRefGoogle Scholar
  53. Saanen Y, van Valkengoed M (2006) Comparison of three automated stacking alternatives by means of simulation. In Kuhl ME, Steiger NM, Armstrong FB, Oines JA (eds) Proceedings of the winter simulation conference 2005, pp 1567–1576Google Scholar
  54. Speer U (2017) Optimierung von automatischen Lagerkransystemen auf Containerterminals. Springer, BerlinCrossRefGoogle Scholar
  55. Speer U, Fischer K (2016) Scheduling of different automated yard crane systems at container terminals. Transp Sci 51(1):305–324CrossRefGoogle Scholar
  56. Speer U, John G, Fischer K (2011) Scheduling yard cranes considering crane interference. Lect Notes Comput Sci 6971:321–340CrossRefGoogle Scholar
  57. Stahlbock R, Voß S (2008) Operations research at container terminals: a literature update. OR Spectr 30:1–52CrossRefGoogle Scholar
  58. Steenken D, Voß S, Stahlbock R (2004) Container terminal operations and operations research: a classification and literature review. OR Spectr 26:3–49CrossRefGoogle Scholar
  59. Vis IFA, Carlo HJ (2010) Sequencing two cooperating automated stacking cranes in a container terminal. Transp Sci 44:169–182CrossRefGoogle Scholar
  60. Yang CH, Choi YS, Ha TY (2004) Simulation-based performance evaluation of transport vehicles at automated container terminals. OR Spectr 26(2):149–170CrossRefGoogle Scholar
  61. Zhu Y, Lim A (2006) Crane scheduling with non-crossing constraints. J Oper Res Soc 57:1464–1471CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Schumpeter School of Business and EconomicsUniversity of WuppertalWuppertalGermany
  2. 2.Management Science and Operations ResearchHelmut-Schmidt-UniversityHamburgGermany
  3. 3.Department for Business Administration Sustainable Operations and LogisticsUniversity of AugsburgAugsburgGermany

Personalised recommendations