Advertisement

OR Spectrum

, Volume 37, Issue 1, pp 75–97 | Cite as

Timetabling with passenger routing

  • Marie SchmidtEmail author
  • Anita Schöbel
Regular Article

Abstract

Customer-oriented optimization of public transport needs data about the passengers in order to obtain realistic models. Current models take passengers’ data into account by using the following two-phase approach: In a first phase, routes for the passengers are determined. In a second phase, the actual planning of lines, timetables, etc., takes place using the knowledge on which routes passengers want to travel from the results of the first phase. However, the actual route a passenger will take strongly depends on the timetable, which is not yet known in the first phase. Hence, the two-phase approach finds non-optimal solutions in many cases. In this paper we study the integrated problem of determining a timetable and the passengers’ routes simultaneously. We investigate the computational complexity of the problem and present solution approaches which are tested on close-to-real-world data.

Keywords

Timetabling Routing Complexity Integer programming 

Notes

Acknowledgments

We want to thank the LinTim team and in particular Jennifer Anhalt for providing data and computing the numerical results. We also acknowledge the helpful comments of the anonymous referees and associate editor.

References

  1. Anhalt J (2012) Eine iterative Heuristik für aperiodische Fahrplangestaltung mit OD-Paaren. Master’s thesis, Georg-August-Universität Göttingen (in German)Google Scholar
  2. Bellare M, Goldwasser S, Lund C, Russel A (1993) Efficient probabilistically checkable proofs and applications to approximation. In: STOC ’93 Proceedings of the twenty-fifth annual ACM symposium on Theory of computing. ACM, New York, USA, pp 294–304Google Scholar
  3. Borndörfer R, Grötschel M, Pfetsch ME (2007) A column-generation approach to line planning in public transport. Transp Sci 41(1):123–132CrossRefGoogle Scholar
  4. Borndörfer R, Grötschel M, Pfetsch ME (2008) Models for line planning in public transport. In: Hickman M, Mirchandani P, Voß S (eds) Computer-aided systems in public transport, vol 600., Lecture notes in economics and mathematical systemsSpringer, Berlin, pp 363–378CrossRefGoogle Scholar
  5. Dollevoet T, Huisman D (2011) Fast heuristics for delay management with passenger rerouting. Tech rep. Econometric Institute, Erasmus University RotterdamGoogle Scholar
  6. Dollevoet T, Huisman D, Schmidt M, Schöbel A (2012) Delay management with re-routing of passengers. Transp Sci 46(1):74–89CrossRefGoogle Scholar
  7. Feige U (1998) A threshold of ln n for approximating set cover. J ACM 45:634–652CrossRefGoogle Scholar
  8. Fischetti M, Monaci M (2009) Light robustness. In: Ahuja RK, Möhring R, Zaroliagis C (eds) Robust and online large-scale optimization., Lecture note on computer scienceSpringer, New York, pp 61–84CrossRefGoogle Scholar
  9. Fischetti M, Salvagnin S, Zanette A (2009) Fast approaches to improve the robustness of a railway timetable. Transp Sci 43:321CrossRefGoogle Scholar
  10. Garey M, Johnson D (1979) Computers and intractability—a guide to the theory of NP-completeness. Freeman, San FranciscoGoogle Scholar
  11. Goerigk M, Schöbel A (2010) An empirical analysis of robustness concepts for timetabling. In: Erlebach T, Lübbecke M (eds) Proceedings of ATMOS, OASIcs, vol 14. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 100–113Google Scholar
  12. Goerigk M, Schöbel A (2012) Improving the modulo simplex algorithm for large-scale periodic timetabling. Computc Oper Res. doi: 10.1016/j.cor.2012.08.018
  13. Gurobi Optimizer (2011). http://www.gurobi.com/. Gurobi Optimizer Version 4.5.1, Houston, Gurobi Optimization Inc., Texas
  14. Kinder M (2008) Models for periodic timetabling. Master’s thesis, Technische Universität, BerlinGoogle Scholar
  15. Krasemann J (2012) Design of an effective algorithm for fast response to the rescheduling of railway traffic during disturbances. Transp Res Part C 20:62–78CrossRefGoogle Scholar
  16. Liebchen C (2006) Periodic timetable optimization in public transport. Ph.D. thesis, Technische Universität, Berlin, Published by dissertation.de.Google Scholar
  17. Liebchen C, Lübbecke M, Möhring R (2009) The concept of recoverable robustness, linear programming recovery, and railway applications. In: Ahuja RK, Möhring R, Zaroliagis C (eds) Robust and online large-scale optimization. Springer, New YorkGoogle Scholar
  18. Liebchen C, Proksch M, Wagner FH (2008) Performance of algorithms for periodic timetable optimization. In: Fandel G, Trockel W, Hickman M, Mirchandani P, Voß S (eds) Computer-aided systems in public transport, vol 600., Lecture notes in economics and mathematical systemsSpringer, Berlin, pp 151–180CrossRefGoogle Scholar
  19. Lindner T (2000) Train schedule optimization in public rail transport. Ph.D. thesis, Technische Universität BraunschweigGoogle Scholar
  20. LinTim - Integrated optimization in public transportation (2011). http://lintim.math.uni-goettingen.de. Accessed 09 Nov 2011
  21. Lübbe J (2009) Passagierrouting und Taktfahrplanoptimierung. Master’s thesis, Technische Universität Berlin (in German)Google Scholar
  22. Lusby R, Larsen J, Ehrgott M, Ryan D (2011) Railway track allocation: models and methods. OR Spectr 33:843–883CrossRefGoogle Scholar
  23. Nachtigall K (1998) Periodic network optimization and fixed interval timetables. Deutsches Zentrum für Luft- und Raumfahrt. Institut für Flugführung, Braunschweig. HabilitationsschriftGoogle Scholar
  24. Nachtigall K, Opitz J (2008) Solving periodic timetable optimisation problems by modulo simplex calculations. In: Fischetti M, Widmayer P (eds) Proceedings of ATMOS. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, GermanyGoogle Scholar
  25. Nemhauser GL, Wolsey LA (1988) Integer and combinatorial optimization. Wiley, New YorkCrossRefGoogle Scholar
  26. Odijk MA (1996) A constraint generation algorithm for the construction of periodic railway timetables. Transp Res Part B 30(6):455–464CrossRefGoogle Scholar
  27. Odijk MA (1998) Railway timetable generation. Ph.D. thesis, Technische Universiteit DelftGoogle Scholar
  28. Peeters L (2003) Cyclic railway timetable optimization. Ph.D. thesis, Erasmus University RotterdamGoogle Scholar
  29. Pfetsch M, Borndörfer R (2006) Routing in line planning for public transport. In: Haasis HD, Kopfer H, Schönberger J (eds) Operations Research Proceedings 2005, vol 2005. Springer, Berlin, pp 405–410Google Scholar
  30. Rockafellar RT (1984) Network flows and monotropic optimization. John Wiley & Sons, Inc., New YorkGoogle Scholar
  31. Schmidt M (2012) Integrating routing decisions in network problems. Ph.D. thesis, Institute for Numerical and Applied Mathematics, Georg-August-University GöttingenGoogle Scholar
  32. Schmidt M (2012) Line planning with equilibrium routing. Tech rep, Institut für Numerische und Angewandte Mathematik, Georg-August Universität GöttingenGoogle Scholar
  33. Schmidt M (2013) Simultaneous optimization of delay management decisions and passenger routes. Public Transp 5:125–147CrossRefGoogle Scholar
  34. Schmidt M (2014) Integrating routing decisions in public transportation problems, optimization and its applications. Springer, New YorkGoogle Scholar
  35. Schmidt M, Schöbel A (2010) The complexity of integrating routing decisions in public transportation models. In: Erlebach T, Lübbecke M (eds) Proceedings of ATMOS, OASIcs, vol 14. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp 156–169Google Scholar
  36. Schöbel A (2006) Optimization in public transportation. Stop location, delay management and tariff planning from a customer-oriented point of view. Optimization and its applications. Springer, New YorkGoogle Scholar
  37. Schöbel A (2012) Line planning in public transportation: models and methods. OR Spectr 34(3):491–510CrossRefGoogle Scholar
  38. Schöbel A, Kratz A (2009) A bicriteria approach for robust timetabling. Lect Notes Comput Sci 5868:119CrossRefGoogle Scholar
  39. Schöbel A, Scholl S (2006) Line planning with minimal travel time. In: 5th Workshop on Algorithmic Methods and Models for Optimization of Railways, no. 06901 in Dagstuhl Seminar ProceedingsGoogle Scholar
  40. Serafini P, Ukovich W (1989) A mathematical model for periodic scheduling problems. SIAM J Discret Math 2:550–581CrossRefGoogle Scholar
  41. Siebert M, Goerigk M (2013) An experimental comparison of periodic timetabling models. Comput Oper Res 40(10):2251–2259CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute for Numerical and Applied MathematicsGöttingenGermany

Personalised recommendations