OR Spectrum

, Volume 35, Issue 4, pp 807–834 | Cite as

A stochastic programming approach to determine robust delivery profiles in area forwarding inbound logistics networks

  • Tim Schöneberg
  • Achim KobersteinEmail author
  • Leena Suhl
Regular Article


One technique to coordinate the suppliers’ and the producers’ production plans in a supply chain is the use of delivery profiles, which provide fixed delivery frequencies for all suppliers. The selection of a delivery profile assignment has major effects on the cost efficiency and the robustness of a supply chain and thus should be performed carefully. In this work, we consider planning approaches to select delivery profiles for the case of area forwarding-based inbound logistics networks, which are commonly used in several industries to consolidate supplies in an early stage of transport. We present a two-stage stochastic mixed integer linear programming model to determine robust delivery profile assignments under uncertain and infrequent demands and complex tariff systems. The model is embedded into a solution framework consisting of scenario generation and reduction techniques, a decomposition approach, a genetic algorithm, and a standard MILP solver. On the basis of an industrial case study, we show that our approach is computationally feasible and that the planning solutions obtained by our model outperform both a deterministic approach and the planning methodology prevailing in industrial practice.


Procurement planning Delivery profiles Automotive industry Stochastic programming model 


  1. Aksoy Y, Erenguc SS (1988) Multi-item inventory models with co-ordinated replenishments: a survey. Int J Oper Prod Manag 8(1): 63–73. doi: 10.1108/eb054814.
  2. Andler K (1929) Rationalisierung der Fabrikation und optimale LosgrößeGoogle Scholar
  3. Benton W (1991) Quantity discount decisions under conditions of multiple items, multiple suppliers and resource limitations. Int J Prod Res 29(10):1953–1961CrossRefGoogle Scholar
  4. Benton W, Park S (1996) A classification of literature on determining the lot size under quantity discounts. Eur J Oper Res 92(2):219–238CrossRefGoogle Scholar
  5. Blumenfeld D, Burns L, Daganzo C, Frick M, Hall R (1985) Reducing logistics costs at general motors. Interfaces 17(1):26–47CrossRefGoogle Scholar
  6. Boctor FF, Laporte G, Renaud J (2004) Models and algorithms for the dynamic-demand joint replenishment problem. Int J Prod Res 42(13):2667–2678. doi: 10.1080/00207540410001671660 CrossRefGoogle Scholar
  7. Bookbinder JH, Tan JY (1988) Strategies for the probabilistic lot-sizing problem with service-level constraints. Manag Sci 34(9):1096–1109CrossRefGoogle Scholar
  8. Bregman RL, Silver EA (1993) A modification of the silver–meal heuristic to handle MRP purchase discount situations. J Oper Res Soc 44(7):717–723Google Scholar
  9. Burns L, Hall R, Blumenfeld D, Daganzo C (1985) Distribution strategies that minimize transportation inventory costs. Oper Res 33:469–490CrossRefGoogle Scholar
  10. Buschkühl L, Sahling F, Helber S, Tempelmeier H (2008) Dynamic capacitated lot-sizing problems: a classification and review of solution approaches. OR Spectrum 32(2):231–261. doi: 10.1007/s00291-008-0150-7.
  11. Cetinkaya S, Mutlu F, Lee CY (2006) A comparison of outbound dispatch policies for integrated inventory and transportation decisions. Eur J Oper Res 171:1094–1112CrossRefGoogle Scholar
  12. Chakravarty AK (1984) Joint inventory replenishments with group discounts based on invoice value. Manag Sci 30(9):1105–1112CrossRefGoogle Scholar
  13. Chen Ps (2005) Cost minimalization in multi-commodity, multi-mode generalized networks with time windows. Ph.D. thesis, Texas A & M UniversityGoogle Scholar
  14. Crainic TG (2000) Service network design in freight transportation. Eur J Oper Res 122(2):272–288CrossRefGoogle Scholar
  15. Crainic TG, Rousseau Jm (1986) Multicommodity, multimode freight transportation: a general modeling and algorithmic framework for the service network design problem. Transp Res Part B Methodol 20(3):225–242CrossRefGoogle Scholar
  16. DeMatteis JJ (1968) An economic lot-sizing technique, I: the part-period algorithm. IBM Syst J 7(1):30–38. doi: 10.1147/sj.71.0030 CrossRefGoogle Scholar
  17. Drexl A, Kimms A (1997) Lot sizing and scheduling—survey and extensions. Eur J Oper Res 99(2):221–235CrossRefGoogle Scholar
  18. Fahle T, Schamberger S, Sellmann M (2001) Symmetry breaking. In: Walsh T (ed) Principles and practice of constraint programming CP 2001. Lecture notes in computer science, vol 2239. Springer, Berlin. pp 93–107. doi: 10.1007/3-540-45578-7_7
  19. Federgruen A, Lee CY (1990) The dynamic lot size model with quantity discount. Naval Res Logist 37(5):707–713CrossRefGoogle Scholar
  20. Geunes J, Pardalos P (2003) Network optimization in supply chain management and financial engineering: an annotated bibliography. Networks 42(2):66–84CrossRefGoogle Scholar
  21. Goldberg DE (1989) Genetic algorithms in search, optimization and, machine learningGoogle Scholar
  22. Goyal SK, Satir AT (1989) Joint replenishment inventory control: deterministic and stochastic models. Eur J Oper Res 38(1):2–13CrossRefGoogle Scholar
  23. Harris FW (1913) How many parts to make at once. Factory, The Magazine of Management. 10(2):135–136. doi: 10.1287/opre.38.6.947
  24. Heitsch H, Römisch W (2003) Scenario reduction algorithms in stochastic programming. Comput Optim Appl 24:187–206CrossRefGoogle Scholar
  25. Jans R, Degraeve Z (2008) Modeling industrial lot sizing problems: a review. Int J Prod Res 46(6):1619–1643. doi: 10.1080/00207540600902262 CrossRefGoogle Scholar
  26. Karimi B, Ghomia SF, Wilson J (2003) The capacitated lot sizing problem: a review of models and algorithms. Omega 31(5):365–378. doi: 10.1016/S0305-0483(03)00059-8. Google Scholar
  27. Kempkes J, Koberstein A (2010) A resource based mixed integer modelling approach for integrated operational logistics planning. Adv Manuf Sustain Logist 46(4):281–294. doi: 10.1007/978-3-642-12494-5_26.
  28. Kempkes JP (2009) Kostenoptimale Materialflüsse in der operativen Zulieferungslogistik der Nutzfahrzeugindustrie. Ph.D. thesis, University of PaderbonGoogle Scholar
  29. Meyr H (2004) Supply chain planning in the German automotive industry. OR Spectr 26(4):447–470.  10.1007/s00291-004-0168-4 Google Scholar
  30. Minner S (2003) Multiple-supplier inventory models in supply chain management: A review. Int J Prod Econ 81–82: 265–279 (Proceedings of the Eleventh International Symposium on Inventories). doi: 10.1016/S0925-5273(02)00288-8.
  31. Moin N, Salhi S (2007) Inventory routing problems: a logistical overview. J Oper Res Soc 58(2):1185–1194CrossRefGoogle Scholar
  32. Mutlu F, Cetinkaya S, Bookbinder J (2010) An analytical model for computing the optimal time-and-quantity-based policy for consolidated shipments. IIE Trans 42:367–377CrossRefGoogle Scholar
  33. Reith-Ahlemeier G (2002) Ressourcenorientierter Bestellmengenplanung und Lieferantenauswahl: Modelle und Algorithmen f\(\backslash \backslash \)”ur Supply Chain Optimierung und E-Commerce. Books on Demand.
  34. Robinson P, Narayanan a, Sahin F (2009) Coordinated deterministic dynamic demand lot-sizing problem: a review of models and algorithms. Omega 37(1):3–15. doi: 10.1016/
  35. Schöneberg T, Koberstein A, Suhl L (2011) An optimization model for automated selection of economic and ecologic delivery profiles in area forwarding based inbound logistics networks. Flex Serv Manuf J 22(3–4):214–235. doi: 10.1007/s10696-011-9084-5.
  36. Schöneberg T, Koberstein A, Suhl L (2011) Impact of delivery profiles on the stability of delivery profiles. In: Proceedings of the 21st International Conference on Production ResearchGoogle Scholar
  37. Silver E (1978) Inventory control under a probabilistic time-varying demand pattern. AIIE Trans 10(4):371–379CrossRefGoogle Scholar
  38. Silver EA (1979) A simple inventory replenishment decision rule for a linear trend in demand. J Oper Res Soc 30(1):71–75Google Scholar
  39. Speranza M, Ukovich W (1994) Minimizing transportation and inventory costs for several products on a single link. Oper Res 42(5):879–894CrossRefGoogle Scholar
  40. Stadtler H (2006) A general quantity discount and supplier selection mixed integer programming model. OR Spectr 29(4):723–744. doi: 10.1007/s00291-006-0066-z. Google Scholar
  41. Tarim SA, Kingsman BG (2004) The stochastic dynamic production/inventory lot-sizing problem with service-level constraints. Int J Prod Econ 88(1):105–119. doi: 10.1016/S0925-5273(03)00182-8.
  42. Tempelmeier H (2002) A simple heuristic for dynamic order sizing and supplier selection with time-varying data. Order A J Theory Ordered Sets Appl 11(4):499–515Google Scholar
  43. Tempelmeier H (2007) On the stochastic uncapacitated dynamic single-item lotsizing problem with service level constraints. Eur J Oper Res 181(1):184–194. doi: 10.1016/j.ejor.2006.06.009. Google Scholar
  44. Viswanathan S (2001) Coordinating supply chain inventories through common replenishment epochs. Eur J Oper Res 129:277–286CrossRefGoogle Scholar
  45. Wagner HM, Whitin TM (1958) Dynamic version of the economic lot size model. Manag Sci 5(1):89–96CrossRefGoogle Scholar
  46. Xu J, Lu LL, Glover F (2000) The deterministic multi-item dynamic lot size problem with joint business volume discount. Ann Oper Res 96(1–4):317–337CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Universität PaderbornPaderbornGermany
  2. 2.Goethe Universität FrankfurtFrankfurt am MainGermany

Personalised recommendations