OR Spectrum

, Volume 36, Issue 1, pp 39–56 | Cite as

Interactive multiobjective optimization with NIMBUS for decision making under uncertainty

  • Kaisa Miettinen
  • Jyri Mustajoki
  • Theodor J. Stewart
Regular Article

Abstract

We propose an interactive method for decision making under uncertainty, where uncertainty is related to the lack of understanding about consequences of actions. Such situations are typical, for example, in design problems, where a decision maker has to make a decision about a design at a certain moment of time even though the actual consequences of this decision can be possibly seen only many years later. To overcome the difficulty of predicting future events when no probabilities of events are available, our method utilizes groupings of objectives or scenarios to capture different types of future events. Each scenario is modeled as a multiobjective optimization problem to represent different and conflicting objectives associated with the scenarios. We utilize the interactive classification-based multiobjective optimization method NIMBUS for assessing the relative optimality of the current solution in different scenarios. This information can be utilized when considering the next step of the overall solution process. Decision making is performed by giving special attention to individual scenarios. We demonstrate our method with an example in portfolio optimization.

Keywords

Multiple objective programming Interactive methods  Scenarios Uncertainty handling Pareto optimality Classification of objectives 

Notes

Acknowledgments

The authors are grateful to Petri Eskelinen, Sauli Ruuska and Margaret M. Wiecek for their contribution in the earlier phases of the work. The research of Kaisa Miettinen was partly supported by the Jenny and Antti Wihuri Foundation, Finland, and Jyri Mustajoki by the Academy of Finland (project 127264).

References

  1. Bennett EM, Carpenter SR, Peterson GD, Cumming GS, Zurek M, Pingali P (2003) Why global scenarios need ecology. Front Ecol Environ 1:322–329Google Scholar
  2. Deb K, Miettinen K, Chaudhuri S (2010) Towards an estimation of nadir objective vector using a hybrid of evolutionary and local search approaches. IEEE Trans Evol Comput 14:821–841CrossRefGoogle Scholar
  3. Duinker PN, Greig LA (2007) Scenario analysis in environmental impact assessment: improving explorations of the future. Environ Impact Assess Rev 27:206–219CrossRefGoogle Scholar
  4. Durbach I, Stewart TJ (2003) Integrating scenario planning and goal programming. J Multi Criteria Decis Anal 12:261–271CrossRefGoogle Scholar
  5. Ehrgott M, Klamroth K, Schwehm C (2004) An MCDM approach to portfolio optimization. Eur J Oper Res 155:752–770CrossRefGoogle Scholar
  6. Engau A, Wiecek MM (2007) 2D decision-making for multicriteria design optimization. Struct Multidiscip Optim 34:301–315CrossRefGoogle Scholar
  7. Engau A, Wiecek MM (2008) Interactive coordination of objective decompositions in multiobjective programming. Manag Sci 54:1350–1363CrossRefGoogle Scholar
  8. Eskelinen P, Ruuska S, Miettinen K, Wiecek M, Mustajoki J (2010) A scenario-based interactive multiobjective optimization method for decision making under uncertainty. In: Antunes CH, Rios Insua D, Dias LC (eds) CD-Proceedings of the 25th mini-EURO conference on uncertainty and robustness in planning and decision making. University of Coimbra, CoimbraGoogle Scholar
  9. Goodwin P, Wright G (2001) Enhancing strategy evaluation in scenario planning: a role for decision analysis. J Manag Stud 38:1–16CrossRefGoogle Scholar
  10. Gutiérrez J, Puerto J, Sicilia J (2004) The multiscenario lot size problem with concave costs. Eur J Oper Res 156:168–182CrossRefGoogle Scholar
  11. Hakanen J, Miettinen K, Sahlstedt K (2011) Wastewater treatment: new insight provided by interactive multiobjective optimization. Decis Support Syst 51(2):328–337CrossRefGoogle Scholar
  12. Klein G, Moskowitz H, Ravindran A (1990) Interactive multiobjective optimization under uncertainty. Manag Sci 36:58–75CrossRefGoogle Scholar
  13. Laukkanen T, Tveit T-M, Ojalehto V, Miettinen K, Fogelholm C-J (2010) An interactive multi-objective approach to heat exchanger network synthesis. Comput Chem Eng 34(6):943–952Google Scholar
  14. Lotov AV, Miettinen K (2008) Visualizing the Pareto frontier. In: Branke J, Deb K, Miettinen K, Slowinski R (eds) Multiobjective optimization: interactive and evolutionary approaches. Springer, Berlin, pp 213–243Google Scholar
  15. Maack JN (2001) Scenario analysis: a tool for task managers. In: Social analysis: selected tools and techniques, social development. The Social Development Department, the World Bank, Washington, DC, pp 62–87Google Scholar
  16. Markowitz HM (1952) Portfolio selection. J Finance 7(1):77–91Google Scholar
  17. Miettinen K (1999) Nonlinear multiobjective optimization. Kluwer, BostonGoogle Scholar
  18. Miettinen K (2006) IND-NIMBUS for demanding interactive multiobjective optimization. In: Trzaskalik T (ed) Multiple criteria decision making ’05. The Karol Adamiecki University of Economics in Katowice, Katowice, pp 137–150Google Scholar
  19. Miettinen K (2007) Using interactive multiobjective optimization in continuous casting of steel. Mater Manuf Process 22(5):585–593CrossRefGoogle Scholar
  20. Miettinen K (2013) Survey of methods to visualize alternatives in multiple criteria decision making problems. OR Spectrum. doi: 10.1007/s00291-012-0297-0 (to appear)
  21. Miettinen K, Mäkelä MM (2000) Interactive multiobjective optimization system WWW-NIMBUS on the internet. Comput Oper Res 27(7–8):709–723CrossRefGoogle Scholar
  22. Miettinen K, Mäkelä MM (2006) Synchronous approach in interactive multiobjective optimization. Eur J Oper Res 170:909–922CrossRefGoogle Scholar
  23. Miettinen K, Ruiz F, Wierzbicki AP (2008) Introduction to multiobjective optimization: interactive approaches. In: Branke J, Deb K, Miettinen K, Slowinski R (eds) Multiobjective optimization: interactive and evolutionary approaches. Springer, Berlin, pp 27–57CrossRefGoogle Scholar
  24. Oliveira C, Antunes CH (2009) An interactive method of tackling uncertainty in interval multiple objective linear programming. J Math Sci 161:854–866CrossRefGoogle Scholar
  25. Pajula E, Ritala R (2006) Measurement uncertainty in integrated control and process design—a case study. Chem Eng Process 45:312–322CrossRefGoogle Scholar
  26. Pomerol J-C (2001) Scenario development and practical decision making under uncertainty. Decis Supp Syst 31:197–204CrossRefGoogle Scholar
  27. Ross SA, Westerfield RW, Jordan BD (2006) Fundamentals of corporate finance, 7th edn. McGraw-Hill, New YorkGoogle Scholar
  28. Ruotsalainen H, Miettinen K, Palmgren J-E, Lahtinen T (2010) Interactive multiobjective optimization for anatomy based three-dimensional HDR brachytherapy. Phys Med Biol 55(16):4703–4719CrossRefGoogle Scholar
  29. Schoemaker PJ (1995) Scenario planning: a tool for strategic thinking. Sloan Manag Rev (Winter):25–40Google Scholar
  30. Steuer RE, Qi Y, Hirschberger M (2005) Multiple objectives in portfolio selection. J Financ Decis Making 1(1):11–26Google Scholar
  31. Stewart TJ (2005) Dealing with uncertainties in MCDA. In: Figueira J, Greco S, Ehrgott M (eds) Multiple criteria decision analysis—state of the art surveys. Springer, New York, pp 445–470Google Scholar
  32. Stewart TJ, French S, Rios J (2013) Integrating multicriteria decision analysis and scenario planning—review and extension. Omega 41:679–688CrossRefGoogle Scholar
  33. Suh M, Lee T (2001) Robust optimization method for the economic term in chemical process design and planning. Ind Eng Chem Res 40:5950–5959CrossRefGoogle Scholar
  34. Urli B, Nadeau R (2004) Promise/scenarios: an interactive method for multiobjective stochastic linear programming under partial uncertainty. Eur J Oper Res 155:361–372CrossRefGoogle Scholar
  35. Wiecek MM, Blouin VY, Fadel GM, Engau A, Hunt BJ, Singh V (2009) Multi-scenario multi-objective optimization with applications in engineering design. In: Barichard V, Ehrgott M, Gandibleux X, T’Kindt V (eds) Multiobjective programming and goal programming: theoretical results and practical applications. Springer, Berlin, pp 283–298CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Kaisa Miettinen
    • 1
  • Jyri Mustajoki
    • 2
    • 3
  • Theodor J. Stewart
    • 4
  1. 1.Department of Mathematical Information TechnologyUniversity of JyväskyläUniversity of JyväskyläFinland
  2. 2.Department of Automation Science and EngineeringTampere University of TechnologyTampereFinland
  3. 3.Finnish Environmental Institute, Freshwater CentreHelsinkiFinland
  4. 4.Department of Statistical SciencesUniversity of Cape TownRondeboschSouth Africa

Personalised recommendations