OR Spectrum

, Volume 36, Issue 1, pp 3–37 | Cite as

Survey of methods to visualize alternatives in multiple criteria decision making problems

Regular Article

Abstract

When solving decision problems where multiple conflicting criteria are to be considered simultaneously, decision makers must compare several different alternatives and select the most preferred one. The task of comparing multidimensional vectors is very demanding for the decision maker without any support. Different graphical visualization tools can be used to support and help the decision maker in understanding similarities and differences between the alternatives and graphical illustration is a very important part of decision support systems that are used in solving multiple criteria decision making problems. The visualization task is by no means trivial because, on the one hand, the graphics must be easy to comprehend and not too much information should be lost but, on the other hand, no extra unintentional information should be included. In this paper, we survey and analyze different ways of visualizing a small set of discrete alternatives graphically in the context of multiple criteria decision making. Some of the ways discussed are widely used and some others deserve to be brought into a wider awareness. This survey provides a starting point for all those who deal with multiple criteria decision making problems and need information of what kind of visualization techniques could be put to use in order to support the decision maker better.

Keywords

Comparison of alternatives Visualization Graphical illustration Discrete alternatives Multiobjective optimization Pareto optimality Multicriteria optimization Interactive methods Decision analysis MCDM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson E (1960) A semigraphical method for the analysis of complex problems. Technometrics 2(3): 387–391CrossRefGoogle Scholar
  2. Andrews DF (1972) Plots of high-dimensional data. Biometrics 28(1): 125–136CrossRefGoogle Scholar
  3. Angehrn AA (1991) Designing humanized systems for multiple criteria decision making. Human Syst Manag 10: 221–231Google Scholar
  4. Asimov D (1985) The grand tour: a tool for viewing multidimensional data. SIAM J Sci Stat Comput 6(1): 128–143CrossRefGoogle Scholar
  5. Becker RA, Cleveland WS (1987) Brushing scatterplots. Technometrics 29(2): 127–142CrossRefGoogle Scholar
  6. Bell PC, O’Keefe RM (1995) An experimental investigation into the efficacy of visual interactive simulation. Manag Sci 41(6): 1018–1038CrossRefGoogle Scholar
  7. Belton V, Vickers S (1990) Use of a simple multi-attribute value function incorporating visual interactive sensitivity analysis for multiple criteria decision making. In: Bana e Costa CA (ed) Readings in multiple criteria decision aid, pp 319–334. Springer, BerlinGoogle Scholar
  8. Benbasat I, Dexter AS (1985) An experimental evaluation of graphical and color-enhanced information presentation. Manag Sci 31(11): 1348–1364CrossRefGoogle Scholar
  9. Brans JP, Mareschal B (1994) The PROMCALC & GAIA decision support system for multicriteria decision aid. Decis Support Syst 12(4/5): 297–310CrossRefGoogle Scholar
  10. Brodlie KW, Carpentier LA, Earnshaw RA, Gallop JR, Hubbold RJ, Mumford AM, Osland CD, Quarendon P (eds) (1992) Scientific visualization: techniques and applications. Springer, BerlinGoogle Scholar
  11. Bruckner LA (1978) On Chernoff faces. In: Wang PCC (ed) Graphical representation of multivariate data. Academic Press, New York, pp 93–121Google Scholar
  12. Chambers JM, Cleveland WS, Kleiner B, Tukey PA (1983) Graphical methods for data analysis. Wadsworth International GroupGoogle Scholar
  13. Chambers JM, Kleiner B (1982) Graphical techniques for multivariate data and for clustering. In: Krishnaiah PR, Kanal LN (eds) Classification pattern recognition and reduction of dimensionality, Handbook of Statistics, vol 2, pp 209–244. North-Holland Publishing Company, AmsterdamGoogle Scholar
  14. Chankong V, Haimes YY (1983) Multiobjective decisionmaking theory and methodology. Elsevier Science Publishing Co, AmsterdamGoogle Scholar
  15. Chernoff H (1973) The use of faces to represent points in k-dimensional space graphically. J Am Stat Assoc 76(68): 361–368CrossRefGoogle Scholar
  16. Chernoff H (1978) Graphical representations as a discipline. In: Wang PCC (ed) Graphical representation of multivariate data. Academic Press, New York, pp 1–11Google Scholar
  17. Cleveland WS (1994) The Elements of graphing data. AT&T Bell Laboratories New Jersey, revised EditionGoogle Scholar
  18. Coello Coello CA, Lamont GB, Van Veldhuizen DA (2007) Evolutionary algorithms for solving multiobjective problems, 2nd edn. Springer, BerlinGoogle Scholar
  19. Crawford SL, Fall TC (1990) Projection pursuit techniques for visualizing high-dimensional data sets. In: Nielsen GM, Shriver B (eds) Visualization in scientific computing, pp 94–108. IEEE Computer Society PressGoogle Scholar
  20. Deb K, Miettinen K, Chaudhuri S (2010) Towards an estimation of nadir objective vector using a hybrid of evolutionary and local search approaches. IEEE Trans Evol Comput 14(6): 821–841CrossRefGoogle Scholar
  21. DeSanctis G (1984) Computer graphics as decision aids: directions for research. Decis Sci 15: 463–487CrossRefGoogle Scholar
  22. Eick SG, Wills GJ (1995) High interaction graphics. Eur J Oper Res 81(3): 445–459CrossRefGoogle Scholar
  23. Everitt BS (1978) Graphical techniques for multivariate data. Heinemann Educational BooksGoogle Scholar
  24. Flury B, Riedwyl H (1981) Graphical representation of multivariate data by means of asymmetrical faces. J Am Stat Assoc 76(376): 757–765CrossRefGoogle Scholar
  25. Gabriel KR (1981) Biplot display of multivariate matrices for inspection of data and diagnosis. In: Barnett V (ed) Interpreting multivariate data. Wiley, Chichester, pp 147–173Google Scholar
  26. Gandibleux X (1999) Interactive multicriteria procedure exploiting a knowledge-based module to select electricity production alternatives: the CASTART system. Eur J Oper Res 113(2): 355–373CrossRefGoogle Scholar
  27. Geoffrion AM, Dyer JS, Feinberg A (1972) An interactive approach for multi-criterion optimization, with an application to the operation of an academic department. Manag Sci 19(4): 357–368CrossRefGoogle Scholar
  28. Gnanadesikan R (1977) Methods for statistical data analysis of multivariate observations. Wiley, New YorkGoogle Scholar
  29. Graves SB, Ringuest JL, Bard JF (1992) Recent developments in screening methods for nondominated solutions in multiobjective optimization. Comput Oper Res 19(7): 683–694CrossRefGoogle Scholar
  30. Guerrero H (2010) Excel data analysis: modeling and simulation. Springer, BerlinCrossRefGoogle Scholar
  31. Hamming RW (1973) Numerical methods for scientists and engineers. McGraw Hill, New YorkGoogle Scholar
  32. Hartigan JA (1975) Printer graphics for clustering. J Stat Comput Simul 4(1): 187–213CrossRefGoogle Scholar
  33. Huff DL, Black W (1978) A multivariate graphic display for regional analysis. In: Wang PCC (ed) Graphical representation of multivariate data. Academic Press, New York, pp 199–218Google Scholar
  34. Hwang C-L, Masud ASM (1979) Multiple objective decision making—methods and applications: a stateof- the-art survey. Springer, BerlinCrossRefGoogle Scholar
  35. Jacob RJK (1978) Facial representation of multivariate data. In: Wang PCC (ed) Graphical representation of multivariate data. Academic Press, New York, pp 143–168Google Scholar
  36. Jacob RJK (1981) Comment. J Am Stat Assoc 76(374):270–272 (Comment to the article by Kleiner and Hartigan)Google Scholar
  37. Jarvenpaa SL (1989) The effect of task demands and graphical format on information processing strategies. Manag Sci 35(3): 285–303CrossRefGoogle Scholar
  38. Jaszkiewicz A, Slowiński R (1999) The ‘light beam search’ approach—an overview of methodology and applications. Eur J Oper Res 113: 300–314CrossRefGoogle Scholar
  39. Kasanen E, östermark R, Zeleny M (1991) Gestalt system of holistic graphics: new management support view of MCDM. Comput Oper Res 18(2): 233–239CrossRefGoogle Scholar
  40. Klamroth K, Miettinen K (2007) Integrating approximation and interactive decision making in multicriteria optimization. Oper Res 56(1): 222–234CrossRefGoogle Scholar
  41. Kleiner B, Hartigan JA (1981) Representing points in many dimensions by trees and castles. J Am Stat Assoc 76(374): 260–269CrossRefGoogle Scholar
  42. Klimberg R (1992) GRADS: a new graphical display system for visualizing multiple criteria solutions. Comput Oper Res 19(7): 707–711CrossRefGoogle Scholar
  43. Klimberg R, Cohen RM (1999) Experimental evaluation of a graphical display system to visualizing multiple criteria solutions. Eur J Oper Res 119(1): 191–208CrossRefGoogle Scholar
  44. Kok M (1986) The interface with decision makers and some experimental results in interactive multiple objective programming method. Eur J Oper Res 26(1): 96–107CrossRefGoogle Scholar
  45. Korhonen P, Wallenius J (2008) Visualization in the multiple objective decision-making framework. In: Branke J, Deb K, Miettinen K, Slowinski R (eds) Multiobjective optimization: interactive and evolutionary approaches. Springer, Berlin, pp 195–212CrossRefGoogle Scholar
  46. Korhonen PJ (1986) Solving discrete multiple criteria problems by using visual interaction. In: Fandel G, Grauer M, Kurzhanski A, Wierzbicki AP (eds) Large-scale modelling and interactive decision analysis. Springer, Berlin, pp 176–185CrossRefGoogle Scholar
  47. Korhonen PJ (1991) Using harmonious houses for visual pairwise comparison of multiple criteria alternatives. Decis Support Syst 7(1): 47–54CrossRefGoogle Scholar
  48. Lewandowski A, Granat J (1991) Dynamic BIPLOT as the interaction interface for aspiration based decision support systems. In: Korhonen P, Lewandowski A, Wallenius J (eds) Multiple criteria decision support. Springer, Berlin, pp 229–241Google Scholar
  49. Losa FB, Honert R, Joubert A (2001) The multivariate analysis Biplot as a tool for conflict analysis in MCDA. J Multi-Criteria Decis Anal 10(5): 273–284CrossRefGoogle Scholar
  50. Lotov AV, Bushenkov VA, Kamenev GK (2004) Interactive decision maps: approximation and visualization of Pareto frontier. Kluwer Academic Publishers, BostonCrossRefGoogle Scholar
  51. Lotov AV, Miettinen K (2008) Visualizing the Pareto frontier. In: Branke J, Deb K, Miettinen K, Slowinski R (eds) Multiobjective optimization: interactive and evolutionary approaches. Springer, Berlin, pp 213–243CrossRefGoogle Scholar
  52. Luque M, Ruiz F, Miettinen K (2011) Global formulation for interactive multiobjective optimization. OR Spectr 33: 27–48CrossRefGoogle Scholar
  53. Malakooti B, Raman V (2000) Clustering and selection of multiple criteria alternatives using unsupervised and supervised neural networks. J Intell Manuf 11: 435–451CrossRefGoogle Scholar
  54. Maňas M (1982) Graphical methods of multicriterial optimization. Zeitschrift für Angewandte Mathematik und Mechanik 62(5): 375–377Google Scholar
  55. Mareschal B, Brans J-P (1988) Geometrical representation for MCDA. Eur J Oper Res 34(1): 69–77CrossRefGoogle Scholar
  56. Mezzich JE, Worthington DRL (1978) A comparison of graphical representations of multidimensional psychiatric diagnostic data. In: Wang PCC (ed) Graphical representation of multivariate data. Academic Press, New York, pp 123–141Google Scholar
  57. Miettinen K (1999) Nonlinear multiobjective optimization. Kluwer Academic Publishers, BostonGoogle Scholar
  58. Miettinen K (2003) Graphical illustration of Pareto optimal solutions. In: Tanino T, Tanaka T, Inuiguchi M (eds) Multi-objective programming and goal programming: theory and applications. Springer, Berlin, pp 197–202CrossRefGoogle Scholar
  59. Miettinen K (2006) IND-NIMBUS for demanding interactive multiobjective optimization. In: Trzaskalik T (ed) Multiple criteria decision making’05, pp 137–150. The Karol Adamiecki University of Economics in KatowiceGoogle Scholar
  60. Miettinen K (2008) Introduction to multiobjective optimization: Noninteractive approaches. In: Branke J, Deb K, Miettinen K, Slowinski R (eds) Multiobjective optimization: interactive and evolutionary approaches. Springer, Berlin, pp 1–26CrossRefGoogle Scholar
  61. Miettinen K, Mäkelä MM (2000) Interactive multiobjective optimization system WWW-NIMBUS on the Internet. Comput Oper Res 27: 709–723CrossRefGoogle Scholar
  62. Miettinen K, Mäkelä MM (2006) Synchronous approach in interactive multiobjective optimization. Eur J Oper Res 170: 909–922CrossRefGoogle Scholar
  63. Miettinen K, Molina J, Gonzalez M, Hernandez-Diaz A, Caballero R (2009) Using box indices in supporting comparison in multiobjective optimization. Eur J Oper Res 197: 17–24CrossRefGoogle Scholar
  64. Miettinen K, Ruiz F, Wierzbicki AP (2008) Introduction to multiobjective optimization: interactive approaches. In: Branke J, Deb K, Miettinen K, Slowinski R (eds) Multiobjective optimization: interactive and evolutionary approaches. Springer, Berlin, pp 27–57CrossRefGoogle Scholar
  65. Miller GA (1956) The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol Rev 63(2): 81–87CrossRefGoogle Scholar
  66. Pickett RM, Grinstein GG (1988) Iconographic displays for visualizing multidimensional data. In: IEEE International Conference on Systems, Man, and Cybernetics, China, 1988, Proceedings, pp 514–519. IEEEGoogle Scholar
  67. Pickover CA (1990) Computers, pattern, chaos and beauty: graphics from an unseen world. St. Martin’s Press, New YorkGoogle Scholar
  68. Raveh A (2000) Co-plot: a graphic display method for geometrical representations of MCDM. Eur J Oper Res 125(3): 670–678CrossRefGoogle Scholar
  69. Schilling DA, ReVelle C, Cohon J (1983) An approach to the display and analysis of multiobjective problems. Socio-Econ Plan Sci 17(2): 57–63CrossRefGoogle Scholar
  70. Sobol MG, Klein G (1989) New graphics as computerized displays for human information processing. IEEE Trans Syst Man Cybern 19: 893–898CrossRefGoogle Scholar
  71. Steuer RE (1986) Multiple criteria optimization: theory, computation, and applications. Wiley, New YorkGoogle Scholar
  72. Tan YS, Fraser NM (1998) The modified star graph and the petal diagram: two new visual aids for discrete alternative multicriteria decision making. J Multi-Criteria Decis Anal 7(1): 20–33Google Scholar
  73. Thomas JJ, Cook KA (2005) Illuminating the path: the research and development agenda for visual analytics. IEEE PressGoogle Scholar
  74. Törn A (1983) A sampling-search-clustering approach for solving scalar (local, global) and vector optimization problems. In: Carlsson C, Kochetkova Y (eds) Theory and practice of multiple criteria decision making. North-Holland Publishing Company, Amsterdam, pp 119–141Google Scholar
  75. Trinkaus HL, Hanne T (2005) knowcube: a visual and interactive support for multicriteria decision making. Comput Oper Res 32: 1289–1309CrossRefGoogle Scholar
  76. Tufte ER (1983) The visual display of quantitative information. Graphics Press, CheshireGoogle Scholar
  77. Tukey PA, Tukey JW (1981) Data-driven view selection; agglomeration and sharpening. In: Barnett V (ed) Interpreting multivariate data. Wiley, Chichester, pp 215–243Google Scholar
  78. Tukey PA, Tukey JW (1981) Preparation; prechosen sequences of views. In: Barnett V (ed) Interpreting multivariate data. Wiley, Chichester, pp 189–213Google Scholar
  79. Tversky A, Kahneman D (1974) Judgment under uncertainty: heuristics and biases. Science 185(4157): 1124–1131CrossRefGoogle Scholar
  80. Umanath NS, Vessey I (1994) Multiattribute data presentation and human judgment: a cognitive fit perspective. Decis Sci 25(5/6): 795–824CrossRefGoogle Scholar
  81. Vessey I (1991) Cognitive fit: a theory-based analysis of the graphs versus tables literature. Decis Sci 22: 219–240CrossRefGoogle Scholar
  82. Vetschera R (1992) A preference-preserving projection technique for MCDM. Eur J Oper Res 61(1–2): 195–203CrossRefGoogle Scholar
  83. Vetschera R (1994) Visualisierungstechiken in Entscheidungsproblemen bei mehrfacher Zielsetzung. OR Spectr 16: 227–241CrossRefGoogle Scholar
  84. Voegele K (1990) Annotated bibliography. In: Nielson GM, Shiver B (eds) Visualization in scientific computing, pp 5–25. IEEE Computer Society PressGoogle Scholar
  85. Wakimoto K, Taguri M (1978) Constellation graphical method for representing multi-dimensional data. Ann Inst Stat Math, 30: 97–104, part AGoogle Scholar
  86. Wang PCC, Lake GE (1978) Application of graphical multivariate techniques in policy sciences. In: Wang PCC (ed) Graphical representation of multivariate data. Academic Press, New York, pp 13–58Google Scholar
  87. Ware C (2000) Information visualization: perception for design. Morgan Kaufmann Publishers, Menlo ParkGoogle Scholar
  88. Wickens CD (1992) Engineering psychology and human performance. HarperCollins Publishers, New YorkGoogle Scholar
  89. Wierzbicki AP (1982) A mathematical basis for satisficing decision making. Math Model 3: 391–405CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Mathematical Information TechnologyUniversity of JyväskyläUniversity of JyväskyläFinland
  2. 2.Optimization and Systems Theory, Department of MathematicsKTH Royal Institute of TechnologyStockholmSweden

Personalised recommendations