OR Spectrum

, Volume 34, Issue 1, pp 69–87 | Cite as

A new achievement scalarizing function based on parameterization in multiobjective optimization

  • Yury Nikulin
  • Kaisa Miettinen
  • Marko M. Mäkelä
Regular Article

Abstract

This paper addresses a general multiobjective optimization problem. One of the most widely used methods of dealing with multiple conflicting objectives consists of constructing and optimizing a so-called achievement scalarizing function (ASF) which has an ability to produce any Pareto optimal or weakly/properly Pareto optimal solution. The ASF minimizes the distance from the reference point to the feasible region, if the reference point is unattainable, or maximizes the distance otherwise. The distance is defined by means of some specific kind of a metric introduced in the objective space. The reference point is usually specified by a decision maker and contains her/his aspirations about desirable objective values. The classical approach to constructing an ASF is based on using the Chebyshev metric L. Another possibility is to use an additive ASF based on a modified linear metric L1. In this paper, we propose a parameterized version of an ASF. We introduce an integer parameter in order to control the degree of metric flexibility varying from L1 to L. We prove that the parameterized ASF supports all the Pareto optimal solutions. Moreover, we specify conditions under which the Pareto optimality of each solution is guaranteed. An illustrative example for the case of three objectives and comparative analysis of parameterized ASFs with different values of the parameter are given. We show that the parameterized ASF provides the decision maker with flexible and advanced tools to detect Pareto optimal points, especially those whose detection with other ASFs is not straightforward since it may require changing essentially the reference point or weighting coefficients as well as some other extra computational efforts.

Keywords

Multiobjective optimization Achievement function Parameterization Pareto optimal solutions Multiple criteria decision making 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Deb K, Miettinen K (2010) Nadir point estimation using evolutionary approaches: better accuracy and computational speed through focused search. In: Ehrgott M et al (ed) Multiple criteria decision making for sustainable energy and transportation system. Springer, Berlin, pp 339–354CrossRefGoogle Scholar
  2. Ehrgott M (2000) Multicriteria optimization. Springer, BerlinGoogle Scholar
  3. Fletcher R (1980) Practical methods of optimization. Wiley, New YorkGoogle Scholar
  4. Kaliszewski I (1994) Quantitative Pareto analysis by cone separation technique. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  5. Luque M, Miettinen K, Eskelinen P, Ruiz F (2009) Incorporating preference information in interactive reference point methods for multiobjective optimization. Omega 37: 450–462CrossRefGoogle Scholar
  6. Luque M, Ruiz F, Miettinen K (2009) Global formulation for interactive multiobjective optimization, OR Spectrum. doi:10.1007/s00291-008-0154-3
  7. Miettinen K (1999) Nonlinear multiobjective optimization. Kluwer Academic Publishers, BostonGoogle Scholar
  8. Miettinen K, Ruiz F, Wierzbicki AP (2008) Introduction to multiobjective optimization: interactive approaches. In: Branke J et al (eds) Multiobjective optimization interactive and evolutionary approaches. Lecture Notes in computer science, vol 5252. Springer, Berlin, pp 27–58Google Scholar
  9. Miettinen K, Mäkelä MM (2006) Synchronous approach in interactive multiobjective optimization. Eur J Oper Res 170(3): 909–922CrossRefGoogle Scholar
  10. Miettinen K, Mäkelä MM (2002) On scalarizing functions in multiobjective optimization. OR Spectr 24: 193–213CrossRefGoogle Scholar
  11. Miettinen K, Mäkelä MM, Kaario K (2006) Experiments with classification-based scalarizing functions in interactive multiobjective optimization. Eur J Oper Res 175(2): 931–947CrossRefGoogle Scholar
  12. Mäkelä MM (2002) Survey of bundle methods for nonsmooth optimization. Optim Methods Softw 17(1): 1–20CrossRefGoogle Scholar
  13. Pareto V (1909) Manuel d’ecoonomie politique. Qiard, ParisGoogle Scholar
  14. Rossi F, van Beek P, Walsh T (eds) (2006) Handbook of constraint programming. ElsevierGoogle Scholar
  15. Ruiz F, Luque M, Miguel F, del Mar Muñoz M (2008) An additive achievement scalarizing function for multiobjective programming problems. Eur J Oper Res 188(3): 683–694CrossRefGoogle Scholar
  16. Sawaragi Y, Nakayama H, Tanino T (1985) Theory of multiobjective optimization. Academic Press, OrlandoGoogle Scholar
  17. Slater M (1950) Lagrange multipliers revisited. Cowles Commission Discussion Paper: Mathematics 403Google Scholar
  18. Steuer R (1986) Multiple criteria optimization: theory, computation and application. Wiley, New YorkGoogle Scholar
  19. Westerlund T, Pörn R (2002) Solving pseudo-convex mixed-integer optimization problems by cutting plane techniques. Optim Eng 3: 253–280CrossRefGoogle Scholar
  20. Wierzbicki AP (1977) Basic properties of scalarizing functionals for multiobjective optimization. Optimization 8: 55–60Google Scholar
  21. Wierzbicki AP (1980) The use of reference objectives in multiobjective optimization. In: Fandel G, Gal T (eds) Multiple criteria decision making theory and applications. MCDM theory and applications proceedings. Lecture notes in economics and mathematical systems, vol 177. Springer, Berlin, pp 468–486Google Scholar
  22. Wierzbicki AP (1986a) A methodological approach to comparing parametric characterizations of efficient solutions. In: Fandel G et al (eds) Large-scale modelling and interactive decision analysis. Lecture notes in economics and mathematical systems, vol 273. Springer, Berlin, pp 27–45Google Scholar
  23. Wierzbicki AP (1986b) On the completeness and constructiveness of parametric characterizations to vector optimization problems. OR Spectr 8: 73–87Google Scholar
  24. Wierzbicki AP (1999) Reference point approaches. In: Gal T et al (ed) Multicriteria decision making: advances in MCDM models, algorithms, theory, and applications. Kluwer, Boston, pp 1–39Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Yury Nikulin
    • 1
  • Kaisa Miettinen
    • 2
  • Marko M. Mäkelä
    • 1
  1. 1.Department of MathematicsUniversity of TurkuTurkuFinland
  2. 2.Department of Mathematical Information TechnologyUniversity of JyväskyläJyväskyläFinland

Personalised recommendations